给学徒的WES数据分析流程

作者: 因地制宜的生信达人 | 来源:发表于2018-07-25 21:10 被阅读927次

    首先安装软件

    先安装conda,使用清华的conda,说明书:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
    然后下载安装miniconda,位置:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/ ,更改镜像配置
    下载安装软件之前先搜索是否存在 https://bioconda.github.io/recipes.html

    更改镜像源配置如下:

    wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh 
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda
    conda config --set show_channel_urls yes
    

    然后就可以根据流程来使用conda安装一系列软件

    conda  create -n wes  python=2 bwa
    conda info --envs
    source activate wes
    # 可以用search先进行检索
    conda search sratools
    ## 保证所有的软件都是安装在 wes 这个环境下面
    conda install sra-tools
    conda install samtools
    conda install -y bcftools vcftools  snpeff
    conda install -y multiqc qualimap
     
    # https://software.broadinstitute.org/gatk/download/
    https://github.com/broadinstitute/gatk/releases/download/4.0.6.0/gatk-4.0.6.0.zip
    cd ~/biosoft
    mkdir -p gatk4 &&  cd gatk4
    wget  https://github.com/broadinstitute/gatk/releases/download/4.0.6.0/gatk-4.0.6.0.zip
    unzip gatk-4.0.6.0.zip
    ## 然后下载100G的必备数据才能使用GATK
    

    熟悉参考基因组及必备数据库

    /public/biosoft/GATK/resources/bundle/hg38/bwa_index/
    |-- [ 20K]  gatk_hg38.amb
    |-- [445K]  gatk_hg38.ann
    |-- [3.0G]  gatk_hg38.bwt
    |-- [767M]  gatk_hg38.pac
    |-- [1.5G]  gatk_hg38.sa
    |-- [6.2K]  hg38.bwa_index.log 
    `-- [ 566]  run.sh
    
    /public/biosoft/GATK/resources/bundle/hg38/
    |-- [1.8G]  1000G_phase1.snps.high_confidence.hg38.vcf.gz
    |-- [2.0M]  1000G_phase1.snps.high_confidence.hg38.vcf.gz.tbi
    |-- [3.2G]  dbsnp_146.hg38.vcf.gz
    |-- [3.0M]  dbsnp_146.hg38.vcf.gz.tbi
    |-- [ 59M]  hapmap_3.3.hg38.vcf.gz
    |-- [1.5M]  hapmap_3.3.hg38.vcf.gz.tbi
    |-- [568K]  Homo_sapiens_assembly38.dict
    |-- [3.0G]  Homo_sapiens_assembly38.fasta
    |-- [157K]  Homo_sapiens_assembly38.fasta.fai
    |-- [ 20M]  Mills_and_1000G_gold_standard.indels.hg38.vcf.gz
    |-- [1.4M]  Mills_and_1000G_gold_standard.indels.hg38.vcf.gz.tbi
    

    第一步是QC

    包括使用fasqc和multiqc两个软件查看测序质量,以及使用trim_galore软件进行过滤低质量reads和去除接头。

    mkdir ~/project/boy
    wkd=/home/jmzeng/project/boy
    mkdir {raw,clean,qc,align,mutation}
    cd qc 
    find /public/project/clinical/beijing_boy  -name *gz |grep -v '\._'|xargs fastqc -t 10 -o ./
    
    

    假设质量很差,就过滤:

    ### step3: filter the bad quality reads and remove adaptors. 
    mkdir $wkd/clean 
    cd $wkd/clean
    
    find /public/project/clinical/beijing_boy  -name *gz |grep -v '\._'|grep 1.fastq.gz > 1
    find /public/project/clinical/beijing_boy  -name *gz |grep -v '\._'|grep 2.fastq.gz > 2
    paste 1 2  > config
    ### 打开文件 qc.sh ,并且写入内容如下: 
    source activate wes
    
    bin_trim_galore=trim_galore
    dir=$wkd/clean
    cat config  |while read id
    do
            arr=(${id})
            fq1=${arr[0]}
            fq2=${arr[1]} 
            echo  $dir  $fq1 $fq2 
    nohup $bin_trim_galore -q 25 --phred33 --length 36 -e 0.1 --stringency 3 --paired -o $dir  $fq1 $fq2 & 
    done 
    
    source deactivate
    

    读质量较好的测序数据进行比对

    先走测试数据

    ## 先提取小的fq
    source activate wes
    find /public/project/clinical/beijing_boy  -name *gz |grep -v '\._' > fq.txt
    cat fq.txt |while read id ;do (zcat $id|head -10000 > $(basename $id ".gz"));done
    ## 然后一个个小fq文件比对
    sample='7E5239'
    bwa mem -t 5 -R "@RG\tID:$sample^CSM:$sample\tLB:WGS\tPL:Illumina"  /public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38 7E5239.L1_1.fastq 7E5239.L1_2.fastq  | samtools sort -@ 5 -o 7E5239.bam -
    sample='7E5240'
    bwa mem -t 5 -R "@RG\tID:$sample^CSM:$sample\tLB:WGS\tPL:Illumina"  /public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38  7E5240_L1_A001.L1_1.fastq 7E5240_L1_A001.L1_2.fastq  | samtools sort -@ 5 -o 7E5240.bam -
    sample='7E5241'
    bwa mem -t 5 -R "@RG\tID:$sample^CSM:$sample\tLB:WGS\tPL:Illumina"  /public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38 7E5241.L1_1.fastq 7E5241.L1_2.fastq   | samtools sort -@ 5 -o 7E5241.bam -
    ## 或者循环比对
    # 7E5239    7E5239.L1_1.fastq   7E5239.L1_2.fastq
    # 7E5240    7E5240_L1_A001.L1_1.fastq   7E5240_L1_A001.L1_2.fastq
    # 7E5241    7E5241.L1_1.fastq   7E5241.L1_2.fastq
    INDEX=/public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38
    cat config |while read id
    do
    
    arr=($id)
    fq1=${arr[1]}
    fq2=${arr[2]}
    sample=${arr[0]}
    bwa mem -t 5 -R "@RG\tID:$sample\tSM:$sample\tLB:WGS\tPL:Illumina" $INDEX $fq1 $fq2  | samtools sort -@ 5 -o $sample.bam - 
    
    done 
    
    

    然后走正常的数据

    ls /home/jmzeng/project/boy/clean/*1.fq.gz >1
    ls /home/jmzeng/project/boy/clean/*2.fq.gz >2
    cut -d"/" -f 7 1 |cut -d"_" -f 1  > 0
    paste 0 1 2 > config 
    source activate wes
    INDEX=/public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38
    cat config |while read id
    do
    
    arr=($id)
    fq1=${arr[1]}
    fq2=${arr[2]}
    sample=${arr[0]}
    echo $sample $fq1 $fq2 
     bwa mem -t 5 -R "@RG\tID:$sample\tSM:$sample\tLB:WGS\tPL:Illumina" $INDEX $fq1 $fq2  | samtools sort -@ 5 -o $sample.bam -   
     
    done 
    

    最简单的找变异流程

    如果要理解参数的意思,参考我的直播基因组 【直播】我的基因组25:用bcftools来call variation

    ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
    source activate wes
    time samtools mpileup -ugf $ref  *.bam | bcftools call -vmO z -o out.vcf.gz
    ls *.bam |xargs -i samtools index {}
    ## 没有去除PCR重复
    

    去除PCR重复

    理解参数和教程为什么会过时

    # samtools markdup -r 7E5241.bam 7E5241.rm.bam
    # samtools markdup -S 7E5241.bam 7E5241.mk.bam
    

    完善的GATK流程

    source activate wes
    GATK=/home/jmzeng/biosoft/gatk4/gatk-4.0.6.0/gatk
    ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
    snp=/public/biosoft/GATK/resources/bundle/hg38/dbsnp_146.hg38.vcf.gz
    indel=/public/biosoft/GATK/resources/bundle/hg38/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz  
    
    for sample in {7E5239.L1,7E5240,7E5241.L1}
    do 
    echo $sample  
    # Elapsed time: 7.91 minutes
    $GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" MarkDuplicates \
        -I $sample.bam \
        -O ${sample}_marked.bam \
        -M $sample.metrics \
        1>${sample}_log.mark 2>&1 
    
    
    ## Elapsed time: 13.61 minutes
    $GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" FixMateInformation \
        -I ${sample}_marked.bam \
        -O ${sample}_marked_fixed.bam \
        -SO coordinate \
        1>${sample}_log.fix 2>&1 
    
    samtools index ${sample}_marked_fixed.bam
    
    ##  17.2 minutes
    $GATK --java-options "-Xmx20G -Djava.io.tmpdir=./"  BaseRecalibrator \
        -R $ref  \
        -I ${sample}_marked_fixed.bam  \
        --known-sites $snp \
        --known-sites $indel \
        -O ${sample}_recal.table \
        1>${sample}_log.recal 2>&1 
        
    $GATK --java-options "-Xmx20G -Djava.io.tmpdir=./"   ApplyBQSR \
        -R $ref  \
        -I ${sample}_marked_fixed.bam  \
        -bqsr ${sample}_recal.table \
        -O ${sample}_bqsr.bam \
        1>${sample}_log.ApplyBQSR  2>&1 
        
    ## 使用GATK的HaplotypeCaller命令
    $GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" HaplotypeCaller \
         -R $ref  \
         -I ${sample}_bqsr.bam \
          --dbsnp $snp \
          -O ${sample}_raw.vcf \
          1>${sample}_log.HC 2>&1  
    
    done 
    

    检查感兴趣基因区域内比对和找变异情况

    通过IGV可视化来加深自己对这个流程的把握和理解。

    chr17   HAVANA  gene    43044295        43170245
    3.5G Jul 21 18:01 7E5240.bam
    7.1G Jul 21 21:40 7E5240_bqsr.bam
    4.7G Jul 21 20:28 7E5240_marked.bam
    4.8G Jul 21 20:44 7E5240_marked_fixed.bam
    

    把这些bam里面的BRCA1基因的reads拿出来:

    samtools  view -h  7E5240.bam chr17:43044295-43170245 |samtools sort -o  7E5240.brca1.bam -
    samtools  view -h  7E5240_bqsr.bam chr17:43044295-43170245 |samtools sort -o  7E5240_bqsr.brca1.bam -
    samtools  view -h  7E5240_marked.bam chr17:43044295-43170245 |samtools sort -o  7E5240_marked.brca1.bam -
    samtools  view -h  7E5240_marked_fixed.bam chr17:43044295-43170245 |samtools sort -o  7E5240_marked_fixed.brca1.bam -
    ls  *brca1.bam|xargs -i samtools index {}
    

    有了这些特定基因区域的bam,就可以针对特定基因找变异

    source activate wes
    ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
    samtools mpileup -ugf $ref   7E5240_bqsr.brca1.bam   | bcftools call -vmO z -o 7E5240_bqsr.vcf.gz
    

    所有样本走samtools mpileup 和bcftools call 流程

    仍然是参考我的直播基因组 【直播】我的基因组25:用bcftools来call variation

    source activate wes
    wkd=/home/jmzeng/project/boy
    cd $wkd/align 
    ls  *_bqsr.bam  |xargs -i samtools index {}
    ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
    nohup samtools mpileup -ugf $ref   *_bqsr.bam | bcftools call -vmO z -o all_bqsr.vcf.gz & 
    

    比对及找变异结果的质控

    raw和clean的fastq文件都需要使用fastqc质控。

    比对的各个阶段的bam文件都可以质控。

    使用qualimap对wes的比对bam文件总结测序深度及覆盖度

    source activate wes
    wkd=/home/jmzeng/project/boy
    cd $wkd/clean
    ls *.gz |xargs fastqc -t 10 -o ./
    
    cd $wkd/align
    rm *_marked*.bam
    ls  *.bam  |xargs -i samtools index {} 
    ls  *.bam  | while read id ;do (samtools flagstat $id > $(basename $id ".bam").stat);done
    
    conda install bedtools
    cat /public/annotation/CCDS/human/CCDS.20160908.txt  |perl -alne '{/\[(.*?)\]/;next unless $1;$gene=$F[2];$exons=$1;$exons=~s/\s//g;$exons=~s/-/\t/g;print "$F[0]\t$_\t$gene" foreach split/,/,$exons;}'|sort -u |bedtools sort -i |awk '{print "chr"$0"\t0\t+"}'  > $wkd/align/hg38.exon.bed 
    
    exon_bed=hg38.exon.bed 
    ls  *_bqsr.bam | while read id;
    do
    sample=${id%%.*}
    echo $sample
    qualimap bamqc --java-mem-size=20G -gff $exon_bed -bam $id  & 
    done 
    
    ### featureCounts 
    gtf=/public/reference/gtf/gencode/gencode.v25.annotation.gtf.gz
    featureCounts -T 5 -p -t exon -g gene_id    \
    -a  $gtf   *_bqsr.bam -o  all.id.txt  1>counts.id.log 2>&1 & 
    
    

    比较两个找变异工具的区别

    chr1    139213  .       A       G       388     .   
    DP=984;VDB=0.831898;SGB=-223.781;RPB=0.599582;MQB=0.0001971;MQSB=0.00457372;BQB=2.59396e-09;MQ0F=0.281504;ICB=0.333333;HOB=0.5;AC=3;AN=6;DP4=371,169,160,84;MQ=21
    GT:PL   0/1:198,0,255   0/1:176,0,255   0/1:50,0,158
    
    chr1    139213  rs370723703 A   G   3945.77 .   AC=1;AF=0.500;AN=2;BaseQRankSum=-2.999;ClippingRankSum=0.000;DB;DP=244;ExcessHet=3.0103;FS=2.256;MLEAC=1;MLEAF=0.500;MQ=29.33;MQRankSum=-0.929;QD=16.17;ReadPosRankSum=1.462;SOR=0.863  GT:AD:DP:GQ:PL  0/1:136,108:244:99:3974,0,6459
    chr1    139213  rs370723703 A   G   2261.77 .   AC=1;AF=0.500;AN=2;BaseQRankSum=-1.191;ClippingRankSum=0.000;DB;DP=192;ExcessHet=3.0103;FS=9.094;MLEAC=1;MLEAF=0.500;MQ=32.03;MQRankSum=-0.533;QD=11.78;ReadPosRankSum=0.916;SOR=0.321  GT:AD:DP:GQ:PL  0/1:126,66:192:99:2290,0,7128
    chr1    139213  rs370723703 A   G   2445.77 .   AC=1;AF=0.500;AN=2;BaseQRankSum=-2.495;ClippingRankSum=0.000;DB;DP=223;ExcessHet=3.0103;FS=10.346;MLEAC=1;MLEAF=0.500;MQ=30.18;MQRankSum=0.486;QD=10.97;ReadPosRankSum=-0.808;SOR=0.300 GT:AD:DP:GQ:PL  0/1:152,71:223:99:2474,0,7901
    

    补充作业

    使用freebayes和varscan找变异。

    VCF下游分析

    主要是:注释和过滤

    注释

    VEP,snpEFF,ANNOVAR

    1.Annovar使用记录 (http://www.bio-info-trainee.com/641.html)

    2.用annovar对snp进行注释 (http://www.bio-info-trainee.com/441.html)

    3.对感兴趣的基因call variation(http://www.bio-info-trainee.com/2013.html)

    4.WES(六)用annovar注释(http://www.bio-info-trainee.com/1158.html)

    cd ~/biosoft/
    ln -s /public/biosoft/ANNOVAR/ ANNOVAR
    source activate wes
    wkd=/home/jmzeng/project/boy
    cd $wkd/mutation 
     mv ../align/*.vcf ./
     
     ~/biosoft/ANNOVAR/annovar/convert2annovar.pl  -format vcf4old    7E5240_raw.vcf  >7E5240.annovar
     
    ~/biosoft/ANNOVAR/annovar/annotate_variation.pl \
    -buildver hg38  \
    --outfile 7E5240.anno \
    7E5240.annovar \
    ~/biosoft/ANNOVAR/annovar/humandb/
    

    其实并不一定需要vcf文件,软件需要的只是染色体加上坐标即可,对于我们的vcf格式的变异文件, 软件通常会进行一定程度的格式化之后再进行注释。这里的注释主要有三种方式,分别是:

    补充作业

    使用 Variant Effect Predictor 对所有遗传变异进行注释。过滤掉 dbSNP 数据库和千人基因组计划数据库中已知的 SNP。

    应用 OMIM 数据库(http://omim.org/)查询蛋白 的结构及功能。利用 SIFT ,PolyPhen-2 以及 PROVEAN 软件, 预测 SNV 对蛋白质功能的影响 程度,仅当 3 种软件均预测同一遗传变异对蛋白质 的功能影响较大时,才认定该遗传变异具有高危害 性。利用 PROVEAN 软件 预测 Indel 对蛋白质功 能的影响。

    其实dbNSFP数据库,就注释了这些变异对蛋白功能的影响。

    变异位点的过滤

    使用 GATK的 Joint Calling , 过滤参考:https://mp.weixin.qq.com/s/W8Vfv1WmW6M7U0tIcPtlng

    wes-ad.png

    虽然找到了gatk3代码:http://baserecalibrator1.rssing.com/chan-10751514/all_p13.html 但是 可以抛弃,教程经常会过时。

    相关文章

      网友评论

        本文标题:给学徒的WES数据分析流程

        本文链接:https://www.haomeiwen.com/subject/ycvmmftx.html