支持向量机的核函数

作者: kamidox | 来源:发表于2015-12-08 15:42 被阅读1754次

什么是核函数?核函数的作用是什么?怎么样把核函数和支持向量机结合起来?怎么样使用支持向量机来解决分类问题?怎么样在逻辑回归算法,支持向量机,神经网络这三个分类算法里选择使用哪个算法来解决实际问题?本文就是回答这些疑问的。

核函数

什么是核函数?核函数是特征转换函数。这是非常抽象的描述,这一节的内容就是为了理解这个抽象的概念的。

从多项式说起

多项式

时,我们预测出 $y=1$。上述公式只写了二阶多项式,我们可以写到更高阶的多项式来模拟复杂的分界线。我们改写一下上面的公式:

改写多项式

这里,$f_1=x_1, f_2 = x_2, f_3 = x_1 x_2, f_4 = x_1^2, f_5 = x_2^2 ...$ 。

那么问题来了,除了多项式外,有没有更好地途径把特征 $x_1, x_2$ 映射到特征 $f_1, f_2, f_3, f_4, f_5 ...$ 呢?

相似性函数

我们在二维坐标上选择三个标记点 $l^{(i)}$ ,针对一个训练样例 $x$,我们使用相似性函数来定义新的特征:

Similarity Function

如下图所示,当我们选择三个标记点 $l^{(1)}, l^{(2)}, l^{(3)}$ 时,针对一个只有两个特征的训练样例 $(x_1, x_2)$,通过我们的相似性函数映射后,我们将得到 $f_1, f_2, f_3$ 三个新特征。

高斯核函数

我们把上面的相似性函数称为高斯核函数,它的主要作用就是把输入特征映射到另外一组特征上。当 $x$ 离标记点 $l^{(i)}$ 很近的时候,这两个点间的距离接近于 0 ,故 $f_i$ 接近于 1 。当 $x$ 离标记点 $l^{(i)}$ 很远的时候,这两个点间的距离接近于无穷大,故 $f_i$ 接近于 0 。

理解相似性函数

假设我们选择了三个标识点 $l^{(1)}, l^{(2)}, l^{(3)}$ ,映射出三个新特征 $f_1, f_2, f_3$ ,那么当:

Paste_Image.png

时,我们预测为 1。假设我们训练出来的参数为 $\theta_0 = -0.5, \theta_1 = 1, \theta_2 = 1, \theta_3 = 0$ ,那么当某个测试样例点 $x$ 靠近 $l^{(1)}$ ,但远离 $l^{(2)}, l^{(3)}$ 时,我们可以得出:

Paste_Image.png

即我们把测试样例点 $x$ 归类到 $y=1$ 这个类别里。相同的道理,假设某个测试样例 $x$ 离三个标记点都很远,那么:

Paste_Image.png Similarity

针对训练样例,也满足上述核函数。由于我们选择 landmark 与训练样例重合,所以针对训练样例 $x^{(i)}$ 有 $f_i=1$ 。

计算预测值

假如我们已经算出了 $\theta$,那么当 $\theta^Tf >= 0$ 时,预测值为 1,反之为 0。

计算参数

根据 SVM 的成本函数,由于我们把 $f$ 代替 $x$ 作为新的特征,所以我们可以通过最小化下面的函数来计算得出参数 $\theta$

Cost Function

针对上述公式,实际上 $m=n$,因为 $f$ 是由训练数据集 $x^{(i)}$ 定义,即 $f$ 是一个 m 维的向量。

支持向量机算法的参数

  1. C 值越大,越容易造成过拟合,即 lower bias, higher variance. 当 C 值越小,越容易造成欠拟合,即 higher bias, lower variance。
  2. $\sigma^2$ 越大,高斯核函数的变化越平缓,会导致 higher bias, lower variance。当 $\sigma^2$ 越小,高斯核函数变化越快,会导致 lower bias, higher variance。

实践中的 SVM

一般情况下,我们使用 SVM 库 (liblinear, libsvm ...) 来求解 SVM 算法的参数 $\theta$,而不是自己去实现 SVM 算法。在使用这些库的时候,我们要做的步骤如下

  • 选择参数 C
  • 选择核函数
    • 可以支持空的核函数,即线性核函数 (linear kernel)。Predict "y = 1" if $\theta^Tx >= 0$。
    • 高斯核函数 $f_i = exp \left( - \frac{| x - l^{(i)} |2}{2\sigma2} \right)$,这个时候需要选择合适的参数 $\sigma^2$。

在使用第三方算法的时候,一般需要我们提供核函数的实现。输入参数是 $x_1, x_2$,输出为新的特征值 $f_i$。另外一个需要注意的点是,如果使用高斯核函数,在实现核函数时,需要对参数进行缩放,以便加快算法收敛速度。

多类别的分类算法

这个和逻辑回归里介绍的 one-vs.-all 一样。可以先针对一个类别和其他类别做二元分类,逐个分类出所有的类别。这样我们得到一组参数。假如,我们有 K 个类别,那么我们最终将得到 $\theta^{(1)}, \theta^{(2)}, \theta^{(3)} ... \theta^{(K)}$ 个参数。

算法选择

逻辑回归和 SVM 都可以用来解决分类问题,他们适用的场景有些区别。

假设 n 是特征个数;m 是训练数据集的样例个数。一般可以按照下面的规则来选择算法。

如果 n 相对 m 来说比较大。比如 n = 10,000; m = 10 - 1000,如文本处理问题,这个时候使用逻辑回归或无核函数的 SVM 算法。
如果 n 比较小,m 中等大小。比如 n = 1 - 1000; m = 10 - 10,000。那么可以使用高斯核函数的 SVM 算法。
如果 n 比较小,m 比较大。比如 n = 1 - 1000; m = 50,000+ 。那么一般需要增加特征,并且使用逻辑回归或无核函数的 SVM 算法。

以上的所有情况都可以使用神经网络来解决。但训练神经网络的计算成本比较高。

相关文章

  • 支持向量机的核函数

    什么是核函数?核函数的作用是什么?怎么样把核函数和支持向量机结合起来?怎么样使用支持向量机来解决分类问题?怎么样在...

  • 支持向量机

    支持向量机 线性可分支持向量机与硬间隔最大化 线性支持向量机与软间隔最大化 非线性支持向量机与核函数 序列最小最优...

  • [Stay Sharp]核函数种类

    常见核函数 多项式核函数 对应的支持向量机是一个次多项式分类器,对应的分类决策函数是: 高斯核函数 对应的支持向量...

  • 核函数与支持向量机入门

    原文传送门:核函数与支持向量机入门 理解支持向量机(Support Vector Machine, SVM)的角度...

  • “核函数”的理解

    01 支持向量机核函数的思想 支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间。特征空间的维...

  • 【花书】svm作业

    支持向量机 与 LDA 2.从最优化理论的角度解释为什么存在支撑向量3.为什么svm核函数不需要知道核函数的具体形...

  • 机器学习面试和答案(一)(自己)

    参考文章: 机器学习:支持向量机SVM之核函数:https://zhuanlan.zhihu.com/p/3029...

  • 支持向量机(SVM)--3

    上次说到支持向量机处理线性可分的情况,这次让我们一起学习一下支持向量机处理非线性的情况,通过引进核函数将输入空间映...

  • SVM支持向量机(三)

    非线性支持向量机与核函数 对解线性分类问题,线性分类支持向量机是一种非常有效的方法。但是有些分类问题的非线性的。其...

  • 用SVM算法构造垃圾邮件分类器

    前言 在之前的学习中,已经学习过了支持向量机的算法,在这部分内容中,需要使用2维数据实现带有高斯核函数的支持向量机...

网友评论

  • LostAbaddon:上次我自己玩一个东东的时候,相似性函数没有用高斯型核,用的是1 / (1 + a x ^ 2)这种类型的函数,效果还凑合。
    当然,我玩的不是SVM。。。
  • 曾樑:大神,你又出现了
    曾樑:@kamidox 是哒,简书通宵加班最后搞定了
    kamidox:@曾樑 貌似简书昨天晚上挂了,昨天晚上怎么都连不上,文章也发不了
    kamidox:@曾樑 是个挺大的神棍~~

本文标题:支持向量机的核函数

本文链接:https://www.haomeiwen.com/subject/zupehttx.html