支持向量机的核函数

作者: kamidox | 来源:发表于2015-12-08 15:42 被阅读1754次

    什么是核函数?核函数的作用是什么?怎么样把核函数和支持向量机结合起来?怎么样使用支持向量机来解决分类问题?怎么样在逻辑回归算法,支持向量机,神经网络这三个分类算法里选择使用哪个算法来解决实际问题?本文就是回答这些疑问的。

    核函数

    什么是核函数?核函数是特征转换函数。这是非常抽象的描述,这一节的内容就是为了理解这个抽象的概念的。

    从多项式说起

    多项式

    时,我们预测出 $y=1$。上述公式只写了二阶多项式,我们可以写到更高阶的多项式来模拟复杂的分界线。我们改写一下上面的公式:

    改写多项式

    这里,$f_1=x_1, f_2 = x_2, f_3 = x_1 x_2, f_4 = x_1^2, f_5 = x_2^2 ...$ 。

    那么问题来了,除了多项式外,有没有更好地途径把特征 $x_1, x_2$ 映射到特征 $f_1, f_2, f_3, f_4, f_5 ...$ 呢?

    相似性函数

    我们在二维坐标上选择三个标记点 $l^{(i)}$ ,针对一个训练样例 $x$,我们使用相似性函数来定义新的特征:

    Similarity Function

    如下图所示,当我们选择三个标记点 $l^{(1)}, l^{(2)}, l^{(3)}$ 时,针对一个只有两个特征的训练样例 $(x_1, x_2)$,通过我们的相似性函数映射后,我们将得到 $f_1, f_2, f_3$ 三个新特征。

    高斯核函数

    我们把上面的相似性函数称为高斯核函数,它的主要作用就是把输入特征映射到另外一组特征上。当 $x$ 离标记点 $l^{(i)}$ 很近的时候,这两个点间的距离接近于 0 ,故 $f_i$ 接近于 1 。当 $x$ 离标记点 $l^{(i)}$ 很远的时候,这两个点间的距离接近于无穷大,故 $f_i$ 接近于 0 。

    理解相似性函数

    假设我们选择了三个标识点 $l^{(1)}, l^{(2)}, l^{(3)}$ ,映射出三个新特征 $f_1, f_2, f_3$ ,那么当:

    Paste_Image.png

    时,我们预测为 1。假设我们训练出来的参数为 $\theta_0 = -0.5, \theta_1 = 1, \theta_2 = 1, \theta_3 = 0$ ,那么当某个测试样例点 $x$ 靠近 $l^{(1)}$ ,但远离 $l^{(2)}, l^{(3)}$ 时,我们可以得出:

    Paste_Image.png

    即我们把测试样例点 $x$ 归类到 $y=1$ 这个类别里。相同的道理,假设某个测试样例 $x$ 离三个标记点都很远,那么:

    Paste_Image.png Similarity

    针对训练样例,也满足上述核函数。由于我们选择 landmark 与训练样例重合,所以针对训练样例 $x^{(i)}$ 有 $f_i=1$ 。

    计算预测值

    假如我们已经算出了 $\theta$,那么当 $\theta^Tf >= 0$ 时,预测值为 1,反之为 0。

    计算参数

    根据 SVM 的成本函数,由于我们把 $f$ 代替 $x$ 作为新的特征,所以我们可以通过最小化下面的函数来计算得出参数 $\theta$

    Cost Function

    针对上述公式,实际上 $m=n$,因为 $f$ 是由训练数据集 $x^{(i)}$ 定义,即 $f$ 是一个 m 维的向量。

    支持向量机算法的参数

    1. C 值越大,越容易造成过拟合,即 lower bias, higher variance. 当 C 值越小,越容易造成欠拟合,即 higher bias, lower variance。
    2. $\sigma^2$ 越大,高斯核函数的变化越平缓,会导致 higher bias, lower variance。当 $\sigma^2$ 越小,高斯核函数变化越快,会导致 lower bias, higher variance。

    实践中的 SVM

    一般情况下,我们使用 SVM 库 (liblinear, libsvm ...) 来求解 SVM 算法的参数 $\theta$,而不是自己去实现 SVM 算法。在使用这些库的时候,我们要做的步骤如下

    • 选择参数 C
    • 选择核函数
      • 可以支持空的核函数,即线性核函数 (linear kernel)。Predict "y = 1" if $\theta^Tx >= 0$。
      • 高斯核函数 $f_i = exp \left( - \frac{| x - l^{(i)} |2}{2\sigma2} \right)$,这个时候需要选择合适的参数 $\sigma^2$。

    在使用第三方算法的时候,一般需要我们提供核函数的实现。输入参数是 $x_1, x_2$,输出为新的特征值 $f_i$。另外一个需要注意的点是,如果使用高斯核函数,在实现核函数时,需要对参数进行缩放,以便加快算法收敛速度。

    多类别的分类算法

    这个和逻辑回归里介绍的 one-vs.-all 一样。可以先针对一个类别和其他类别做二元分类,逐个分类出所有的类别。这样我们得到一组参数。假如,我们有 K 个类别,那么我们最终将得到 $\theta^{(1)}, \theta^{(2)}, \theta^{(3)} ... \theta^{(K)}$ 个参数。

    算法选择

    逻辑回归和 SVM 都可以用来解决分类问题,他们适用的场景有些区别。

    假设 n 是特征个数;m 是训练数据集的样例个数。一般可以按照下面的规则来选择算法。

    如果 n 相对 m 来说比较大。比如 n = 10,000; m = 10 - 1000,如文本处理问题,这个时候使用逻辑回归或无核函数的 SVM 算法。
    如果 n 比较小,m 中等大小。比如 n = 1 - 1000; m = 10 - 10,000。那么可以使用高斯核函数的 SVM 算法。
    如果 n 比较小,m 比较大。比如 n = 1 - 1000; m = 50,000+ 。那么一般需要增加特征,并且使用逻辑回归或无核函数的 SVM 算法。

    以上的所有情况都可以使用神经网络来解决。但训练神经网络的计算成本比较高。

    相关文章

      网友评论

      • LostAbaddon:上次我自己玩一个东东的时候,相似性函数没有用高斯型核,用的是1 / (1 + a x ^ 2)这种类型的函数,效果还凑合。
        当然,我玩的不是SVM。。。
      • 曾樑:大神,你又出现了
        曾樑:@kamidox 是哒,简书通宵加班最后搞定了
        kamidox:@曾樑 貌似简书昨天晚上挂了,昨天晚上怎么都连不上,文章也发不了
        kamidox:@曾樑 是个挺大的神棍~~

      本文标题:支持向量机的核函数

      本文链接:https://www.haomeiwen.com/subject/zupehttx.html