美文网首页R语言做生信RNA-seqRNA-seq
RNA-seq分析:从fastq到差异表达基因

RNA-seq分析:从fastq到差异表达基因

作者: 高邮在逃咸鸭蛋 | 来源:发表于2018-12-06 15:54 被阅读33次

    RNA-seq的数据分析是比较简单基础的分析,大概流程就是处理下机的fastq数据(trimmomatic),比对到人类基因组(hisat2)然后统计每个基因上出现的counts数(featureCounts),接下来在R里进行差异表达分析(DEseq2)找出差异表达基因再进行一些富集分析(clusterprofiler)。
    因为前几天刚好处理了一批60个样本的RNA-seq数据,我把每一步都记录下来。
    首先是在linux下进行处理,得到每个样本的counts数文件。

    #!/bin/sh
    
    fq_path=/work/data/lch_analysis
    out_path="/work/analysis/lch_analysis"
    trim_path="/opt/Trimmomatic-0.35"
    hisat2_path="/opt/"
    ht2_genome="/work/database/human/HISAT2/UCSC_hg19_Human"
    gtf="/work/database/human/GTF/gencode.v27lift37.annotation.gtf"
    
    cd $fq_path || exit 1
    for file in $(ls | grep _1.fq.gz)
            do
            pre_name=${file%_good_1.fq.gz}
            mkdir -p $out_path/$pre_name/log
            fq1="${pre_name}_good_1.fq.gz"
            fq2="${pre_name}_good_2.fq.gz"
    
            # Step 0
            # Trim reads using Trimmomatic
            java -Xmx4g -jar \
            $trim_path/trimmomatic-0.35.jar \
            PE \
            -threads 4 \
            -phred33 \
            $fq1 \
            $fq2 \
            -baseout $out_path/$pre_name/${pre_name}_trimmed.fq.gz \
            ILLUMINACLIP:$trim_path/adapters/TruSeq2-PE.fa:2:30:10:6:true \
            SLIDINGWINDOW:4:15 \
            MINLEN:51 \
                    2> $out_path/$pre_name/log/${pre_name}_Trimmomatic.log
    
            # Step 1
            # Map reads to hg19 reference
            hisat2 \
            -p 4 -q \
            -x $ht2_genome/genome \
            --fr \
            --rg-id ${pre_name} \
            --rg SM:${pre_name} --rg LB:${pre_name} --rg PL:ILLUMINA \
            -1 $out_path/$pre_name/${pre_name}_trimmed_1P.fq.gz \
            -2 $out_path/$pre_name/${pre_name}_trimmed_2P.fq.gz | samtools sort -@ 4 - \
            -T $out_path/$pre_name/log/rna_temp \
            -l 1 \
            -o $out_path/$pre_name/${pre_name}_sorted.bam \
            2> $out_path/$pre_name/log/${pre_name}_samtools_sort.log
    
            # Step 2
            # Count number of reads on genes
            featureCounts \
                    -T 4 \
                    -p \
                    -t exon \
                    -g gene_id \
                    -a $gtf \
                    -o $out_path/$pre_name/${pre_name}_featureCounts.txt \
                    $out_path/$pre_name/${pre_name}_sorted.bam \
                    2> $out_path/$pre_name/log/${pre_name}_featureCounts.log
    
            done
    

    上述步骤挺简单的,就不赘述了。接下来是在R中的处理,因为共有60个文件,所以要批量读入处理,这里就要用到lapply和sapply函数了。
    lapply的使用格式为:
    lapply(X, FUN, ...)
    lapply的返回值是和一个和X有相同的长度的list对象,这个list对象中的每个元素是将函数FUN应用到X的每一个元素。其中X为List对象(该list的每个元素都是一个向量),其他类型的对象会被R通过函数as.list()自动转换为list类型。
    函数sapply是函数lapply的一个特殊情形,对一些参数的值进行了一些限定,其使用格式为:
    sapply(X, FUN,..., simplify = TRUE, USE.NAMES = TRUE)
    sapply(x, simplify = FALSE, USE.NAMES = FALSE) 和lapply()的返回值是相同的。如果参数simplify=TRUE,则函数sapply的返回值不是一个list,而是一个矩阵;若simplify=FALSE,则函数sapply的返回值仍然是一个list。

    source("http://bioconductor.org/biocLite.R")
    biocLite("DESeq2")
    library(DESeq2)
    library(org.Hs.eg.db)
    library(pheatmap)
    setwd('/work/work/rna-seq-lhc/deseq2_results')
    ##读取同一目录下的所有文件
    path <- "/work/work/rna-seq-lhc/featurecounts_results_cut" ##文件目录
    fileNames <- dir(path)  ##获取该路径下的文件名
    filePath <- sapply(fileNames, function(x){ 
      paste(path,x,sep='/')})   ##生成读取文件路径
    data <- lapply(filePath, function(x){
      read.table(x,sep = '\t', header=F,stringsAsFactors = F)})  ##读取数据,结果为list
    
    data2 <- lapply(data, function(x){data.frame(ID=gsub('\\..*', '', x$V1), Count=x$V2)})##去掉ensemble版本号
    data3 <- do.call(cbind, data2)##把60个样本合并
    data4 <- data3
    data4$ID <- data4$`Human_J429-ZX01-L01_featureCounts.txt.ID`
    data4 <- data4[,c('ID', grep('Count$', colnames(data4), value = T))]
    data5=aggregate(data4[,-1],by=list(data4$ID),sum)##重复的基因相加
    rownames(data5)=data5$Group.1
    data5=data5[,-1]
    colnames(data5)=unlist(strsplit(colnames(data5),'_f'))[seq(1,ncol(data5)*2,by=2)]
    data5[1:6,1:6]
    
    table=read.csv('/work/work/rna-seq-lhc/分组信息.csv')
    table1=table[table$condition=='before'|table$condition=='after',]##选出治疗前和治疗后的病人
    count1=data5[,table1$name]
    countmatrix1<-as.matrix(count1)
    dds1 <- DESeqDataSetFromMatrix(countmatrix1, colData=table1, design= ~ condition)
    dds1 <- dds1[ rowSums(counts(dds1)) > 1, ]
    dds1 <- DESeq(dds1)##标准化
    res1 <- results(dds1)
    res1$genesymbol <- mapIds(org.Hs.eg.db,keys = rownames(res1),column = "SYMBOL",keytype ="ENSEMBL",multiVals = 'first')##加一列基因symbol
    res1 <- res1[order(res1$padj),]
    res1 <- res1[,c(7,1,2,3,4,5,6)]
    res1 <- merge (as.data.frame(res1),as.data.frame(counts(dds1,normalize=TRUE)),by="row.names",sort=FALSE)
    write.table(res1[1:1000,],"result_before_after_1000.csv", sep = ",", row.names = T)
    differgenes1<-subset(res1,padj<0.05&(log2FoldChange>1|log2FoldChange< -1))
    
    log2.norm.counts1 <- as.data.frame(log2(counts(dds1,normalize=T)+1))[differgenes1$Row.names,]
    log2.norm.counts1[log2.norm.counts1>3]=3
    log2.norm.counts1 <- t(scale(t(log2.norm.counts1)))##scale
    annotation_col1 <- data.frame(condition=table1$condition)
    rownames(annotation_col1) <- table1$name
    pheatmap(log2.norm.counts1, cluster_rows=TRUE, show_rownames=FALSE,
             cluster_cols=T, annotation_col = annotation_col1)
    
    

    输出的res1就是差异表达前一千的基因,后面是DEseq2标准化后的counts数。如果有需要,还可以做一些tsne图,火山图,富集图。我并没有做,在这里把之前相关的脚本贴一下。
    火山图

    #valcano plot
    library(ggplot2)
    library(openxlsx)
    library(ggrepel)
    library(dplyr)
    data=read.xlsx('~/桌面/初步分析2-egfl7.xlsx',sheet = 1)
    #data=read.xlsx('~/桌面/初步分析-mir126.xlsx',sheet = 1)
    
    data$threshold <- as.factor(ifelse(data$pvalue < 0.05 & abs(data$log2FC) >= 1,ifelse(data$log2FC > 1 ,'Up','Down'),'Not'))
    p=ggplot(data=data,aes(x=log2FC, y =-log10(pvalue),colour=threshold,fill=threshold)) +
      scale_color_manual(values=c("blue", "grey","red"))+
      geom_point(alpha=0.8, size=1.2)+
      xlim(c(-4, 4)) +
      theme_bw(base_size = 12, base_family = "Times") +
      geom_vline(xintercept=c(-1,1),lty=4,col="grey",lwd=0.6)+
      geom_hline(yintercept = -log10(0.05),lty=4,col="grey",lwd=0.6)+
      theme(legend.position="right",
            panel.grid=element_blank(),
            legend.title = element_blank(),
            legend.text= element_text(face="bold", color="black",family = "Times", size=8),
            plot.title = element_text(hjust = 0.5),
            axis.text.x = element_text(face="bold", color="black", size=12),
            axis.text.y = element_text(face="bold",  color="black", size=12),
            axis.title.x = element_text(face="bold", color="black", size=12),
            axis.title.y = element_text(face="bold",color="black", size=12))+
      labs(x="log2 (fold change)",y="-log10 (p-value)",title="Volcano picture of DEG")
    
    p+geom_text_repel(data=filter(data, pvalue< 4.32E-09), aes(label=genesymbol),show_guide=F)##把p值小于4.32E-09的基因标注出来
    

    tsne图

    ##tsne
    tsne_matrix <- t(degs_counts)
    tsne_result <- Rtsne(tsne_matrix,perplexity = 3,pca = F,theta=0.5)
    tsne_plot <- data.frame(Cluster.1 = tsne_result$Y[,1], Cluster.2 = tsne_result$Y[,2], 
                            Type = factor(annotation$Type,levels = c("health","before")))
    ggplot(tsne_plot) + 
      geom_point(aes(x=Cluster.1, y=Cluster.2, color=Type)) +
      theme_bw(base_size = 12, base_family = "") +
      theme(legend.justification=c(0,0),legend.position = c(0.75,0.75),
            legend.title = element_blank(),
            legend.text = element_text(size = 10)) + 
      ggtitle("t-SNE Clustering (top 100 DEGs)") + 
      theme(plot.title = element_text(hjust = 0.5))
    dev.off()
    

    GO、KEGG富集

    source("https://bioconductor.org/biocLite.R")
    biocLite("org.Hs.eg.db")
    setwd("/work/R语言/")
    library(org.Hs.eg.db)
    #install clusterProfiler
    source("https://bioconductor.org/biocLite.R")
    biocLite("org.Mm.eg.db")
    library(org.Mm.eg.db)
    biocLite("clusterProfiler")
    library(clusterProfiler)
    #GO
    ego<-enrichGO(OrgDb="org.Mm.eg.db", 
                 #gene = row.names(differgenes),
                 gene = rownames(results[grep("1",results$GeneCluster),]),
                 pvalueCutoff = 0.01,
                 keytype = "ENSEMBL",
                 readable=TRUE)
    write.csv(as.data.frame(ego),"G-enrich.csv",row.names =F)
    
    #KEGG
    a=read.csv("/work/new_output/filter_immune/at2_subtype/at2.csv",header = T,sep = ",",stringsAsFactors = F)
    x<-select(org.Mm.eg.db,
              keys = a[,z], 
              column = "ENTREZID", 
              keytype = "ENSEMBL"
              )
    kegg<-x10[,2]
    ekk <- enrichKEGG(gene=kegg,
                      keyType = "kegg",
                      organism = 'mmu',
                      pvalueCutoff = 0.05,
                      pAdjustMethod = "BH", 
                      qvalueCutoff = 0.1)
    DOSE::dotplot(ekk, font.size=10)
      write.csv(as.data.frame(ekk),y,row.names =F)
    

    相关文章

      网友评论

        本文标题:RNA-seq分析:从fastq到差异表达基因

        本文链接:https://www.haomeiwen.com/subject/hpfocqtx.html