美文网首页三维基因组学三维基因组学相关分析组学
【三维基因组】Hi-C call loops?-choose j

【三维基因组】Hi-C call loops?-choose j

作者: XuningFan | 来源:发表于2020-07-08 21:41 被阅读0次
    image.png

    我们知道.hic 文件是高度压缩的二进制文件,便于存储和分析。那么如果我们想要从.hic提取某一区域的交互信息的话,该如何操作呢?这就涉及到了juicer dump。
    https://github.com/aidenlab/juicer/wiki/Data-Extraction
    Juicer dump 有以下参数:

    Usage:   
    juicebox dump <observed/oe> <NONE/VC/VC_SQRT/KR> <hicFile(s)> <chr1>[:x1:x2] <chr2>[:y1:y2] <BP/FRAG> <binsize> [outfile]
             dump <norm/expected> <NONE/VC/VC_SQRT/KR> <hicFile(s)> <chr> <BP/FRAG> <binsize> [outfile]
             dump <loops/domains> <hicFile URL> [outfile]
    
    

    示例:

    juicer_tools dump observed NONE  sam1.chr20.hic   20:32679500:32680500  20 BP 10000  extract_matrix.txt
    

    提取的矩阵主要有三列:(start,end,contacts)
    提取矩阵示例:

    120000  32680000    1.0
    350000  32680000    2.0
    370000  32680000    1.0
    560000  32680000    1.0
    850000  32680000    1.0
    980000  32680000    1.0
    1190000 32680000    2.0
    1270000 32680000    1.0
    1300000 32680000    1.0
    1800000 32680000    1.0
    

    那么如果我们想要进行可视化的话,可以参照以下代码转换成HiTC格式的矩阵:

        def reform_matrix(self): 
            #-----------HiTC matrix---------------------
            chr=self.chr;start=self.start;end=self.end;bin=self.bin;genome=self.genome
            self.hitc_matrix="{}/{}_{}_{}_{}_hitc.mat".format(self.outdir,self.prefix,chr,start,end)
            mat=pd.read_table(self.juicer_dump_mat,names=['frag1','frag2','contacts'])
                    min=math.ceil(int(start)/bin)*bin
            max=int(int(end)/bin)*bin
            N=int(end/bin)-math.ceil(start/bin)+1
            #---------------------- add header --------------------------
            inddf=np.arange(N)
            headers_ref=[genome for x in inddf]
            bin_num_df=pd.Series(inddf).apply(lambda x : str(x))
            headers_ref=pd.Series(headers_ref)
            chromdf=pd.Series([chr for x in list(range(N))])
            startdf=pd.Series(inddf*bin+min)
            enddf=pd.Series((inddf+1)*bin+min)
            headers_suf=chromdf.str.cat(startdf.apply(lambda x :str(x)),sep=':')
            headers_suf=headers_suf.str.cat(enddf.apply(lambda x:str(x)),sep="-")
            headers=bin_num_df.str.cat([headers_ref,headers_suf],sep="|")
            headers=list(headers)
    
            mat['b1']=mat['frag1'].apply(lambda x: (x-min)/bin)
            mat['b2']=mat['frag2'].apply(lambda x: (x-min)/bin)
            counts=sparse.coo_matrix((mat['contacts'],(mat['b1'],mat['b2'])),shape=(N, N),dtype=float).toarray()
            diag_matrix=np.diag(np.diag(counts))
            counts=counts.T + counts
            counts=counts-diag_matrix
            df=pd.DataFrame(counts)
            df.columns=headers
            df.index=headers
            #print('DataFrame.....')
            #print(df.head())
            df.to_csv(self.hitc_matrix,sep="\t")
            return df
    

    来查看一下结果。

    image.png

    相关文章

      网友评论

        本文标题:【三维基因组】Hi-C call loops?-choose j

        本文链接:https://www.haomeiwen.com/subject/kihaqktx.html