- (8.1)James Stewart Calculus 5th
- (10.3)James Stewart Calculus 5th
- (11.1)James Stewart Calculus 5th
- (10.5)James Stewart Calculus 5th
- (10.6)James Stewart Calculus 5th
- (10.2)James Stewart Calculus 5th
- (10.4)James Stewart Calculus 5th
- (11.2)James Stewart Calculus 5th
- (10.1)James Stewart Calculus 5th
- (8.4)James Stewart Calculus 5th
Arc Length
我们知道,圆是由无数个三角形的边长求和得到的,如下图:
![](https://img.haomeiwen.com/i2800913/4b38574c856a65f7.png)
我们的函数的弧长也类似:
![](https://img.haomeiwen.com/i2800913/2c5d61504262ea72.png)
当我们的点取得比较多的时候,就会:
![](https://img.haomeiwen.com/i2800913/34e319069faf6b19.png)
对应的弧长,也就是线段的和,可以表示为:
![](https://img.haomeiwen.com/i2800913/fb3cc8f9334601dd.png)
这个时候,每一段可以表示为:
![](https://img.haomeiwen.com/i2800913/8a6c7be021fb4b7a.png)
有之前的中值定理,我们可以知道在 [xi-1, xi]的区间上,有
![](https://img.haomeiwen.com/i2800913/7346838ee6ff831e.png)
所以,对应的这2点的距离可以表示为:
![](https://img.haomeiwen.com/i2800913/06b83982c6d8cd37.png)
所以,对应的长度,就是对应线段的和:
![](https://img.haomeiwen.com/i2800913/8d8cd9fd10847c71.png)
我们知道,可以表示为:
![](https://img.haomeiwen.com/i2800913/04dd1b6ff7f055e8.png)
The Arc Length Formula 弧长公式
![](https://img.haomeiwen.com/i2800913/7ff0295bb0d595c6.png)
或者 用 莱布尼兹写法:
![](https://img.haomeiwen.com/i2800913/006169930ab9fb92.png)
例子1
![](https://img.haomeiwen.com/i2800913/5c9ba5d589572fbc.png)
半立方抛物线?? 这名词....
也就是求一个函数,2个点之间的弧长
这2个点,我们知道对应的x取值范围
可以得到对应的表达式为
![](https://img.haomeiwen.com/i2800913/36c97a4ea7479b60.png)
在具体去掉y,可以得到:
![](https://img.haomeiwen.com/i2800913/6bac127a81b72282.png)
设
![](https://img.haomeiwen.com/i2800913/a7ac19b5fb5673ca.png)
则:
![](https://img.haomeiwen.com/i2800913/85f21e6022f6e255.png)
当x=1, u = 13/4, 当 x = 4, u = 10
所以有:
![](https://img.haomeiwen.com/i2800913/9cde924a5db0569b.png)
x和y交换
之前是在 a,b 范围内, 求 x 的积分
其实, 我们反过来想, 是一样的(当然,对应y的函数反过来要连续)
这个时候, 范围就变成 c,d 了,即:
![](https://img.haomeiwen.com/i2800913/ca9d3ef5bf60b616.png)
例子2
![](https://img.haomeiwen.com/i2800913/92904a9a6792d787.png)
由 x = y^2 , 有 dx / dy = 2y
可以得到:
![](https://img.haomeiwen.com/i2800913/75030072c154d7fe.png)
我们可以设y = tanθ / 2,则
![](https://img.haomeiwen.com/i2800913/4477096afa941b68.png)
简单化简得:
![](https://img.haomeiwen.com/i2800913/7298f6f58c3208cf.png)
我们由tanα = 2, 可以得到
![](https://img.haomeiwen.com/i2800913/eac806a52af28317.png)
有
![](https://img.haomeiwen.com/i2800913/9c1dd4f7c134b8c9.png)
所以:
![](https://img.haomeiwen.com/i2800913/a0983041bf68934f.png)
The Arc Length Function 弧长函数
我们看一下定义:
![](https://img.haomeiwen.com/i2800913/398c55007579659d.png)
也就是
在[a,b]上, y = f(x) 沿着初始点P(a,f(a)),到 点Q(x,f(x))
对应的长度的函数
【其实,就是把常量换成了变量,扯了这么久....】
![](https://img.haomeiwen.com/i2800913/3c02a273599a5ce4.png)
一些其他的写法:
![](https://img.haomeiwen.com/i2800913/0e34c24ef66e65f5.png)
或者
![](https://img.haomeiwen.com/i2800913/f271b077ec10aed6.png)
或者
![](https://img.haomeiwen.com/i2800913/c79582a5b08444c8.png)
或者反过来:
![](https://img.haomeiwen.com/i2800913/3e58a2e81e067445.png)
例子4
![](https://img.haomeiwen.com/i2800913/38d7e62833425806.png)
我们可以简单求得:
![](https://img.haomeiwen.com/i2800913/480415f05545b979.png)
有:
![](https://img.haomeiwen.com/i2800913/1d6171e7d2ee3b95.png)
则:
![](https://img.haomeiwen.com/i2800913/745f3d51a7643f5a.png)
所以,弧长的函数为:
![](https://img.haomeiwen.com/i2800913/9c2f4314d2a7b80b.png)
网友评论