Wang et al. Nature Ecology & Evolution, 2019推断物种系统发育关系以及分歧时间对探讨物种起源与演化具有重要意义。通过最大似然法(ML)构建物种进化树以及估算物种分化时间在比较基因组学的研究进展中已经成为了必不可少的“套路”分析方法。
分歧时间是当前进化分析的一个热点,以某几个特定类群的化石时间作为校正,然后通过基因序列间的分歧程度以及分子钟来估算物种间的分歧时间,同时估算系统发育树上其它节点的发生时间,从而推断相关类群的起源和不同类群的分歧时间。
分子钟理论认为基因序列中密码子随着时间的推移以几乎恒定的比例相互替换,即具有恒定的演化速率,因此两个物种之间的遗传距离将与物种的分歧时间成正比。我们通常采用单拷贝直系同源基因中的四倍简并位点(4DTV)来估算分子钟(替换速率)以及物种间的分歧时间。密码子中的四重简并位点第三碱基不改变所编码的氨基酸,属于中性进化,其中中性替换速率一般用每个位点每年的变异数来衡量。目前,采用贝叶斯统计或其他方法估计物种分歧时间的程序很多,例如R8S、MCMCTREE、MULTIDIVTIME、BEAST等,通过不同的策略将化石时间信息整合到一个系统发育树中,从而计算得到Divergence time Tree。
本文主要介绍如何利用PAML软件包中的mcmctree子程序估算物种分化时间:
1. 构建单拷贝直系同源基因
我们可以采用orthofinder或者orthomcl软件鉴定物种间单拷贝直系同源基因,在这里个人推荐使用orthofinder(安装简单、使用方便、运行速度与准确度较好)。关于orthofinder的教程,可参考相关博客,例如「基因组学」使用OrthoFinder进行直系同源基因分析。
2. 提取四倍简并位点
四倍简并位点:如果密码子的某个位点上任何核苷酸都编码同样的氨基酸,则称这个位点为四倍简并位点。
对获取的单拷贝直系同源基因,进行基于密码子比对,去除含有提前终止密码子以及序列长度小于120bp的序列。序列比对我们可以先用PRANK软件比对,然后再用Gblocks进行过滤,或者直接使用OMM_MACSE流程进行序列比对与过滤,然后使用Perl脚本(connect.pl)进行序列串联。
use strict;
use warnings;
use Bio::SeqIO;
my @in=<align/*/cds.best.fas>;
my %seq;
my %name;
my $alllen=0;
my $number;
for my $in (sort @in){
my $fa=Bio::SeqIO->new(-file=>"$in",-format=>"fasta");
my $len;
while (my $seq=$fa->next_seq) {
my $id=$seq->id;
my $seq=$seq->seq;
$len=length($seq);
###check
if ($len % 3 != 0){
die "wrong: $in\t$id\n";
}
my @seq=split(//,$seq);
for (my $i=0;$i<@seq;$i += 3){
my $word=$seq[$i].$seq[$i+1].$seq[$i+2];
die "wrong: $in\t$id\n" if ($word=~/-/ && $word=~/\w/);
}
###check done
my @id=split(/\|/,$id);
$seq{$id[0]} .= $seq;
$name{$id[0]} .= $id;
}
$alllen += $len;
$number++;
}
open (O,">$0.list");
print O "Length:\t$alllen\tNumber:\t$number\n";
for my $k1 (sort keys %name){
my $v=$name{$k1};
my @v=split(/$k1\|/,$v);
shift @v;
print O "$k1\t",scalar(@v),"\t",join(",",@v),"\n";
}
close O;
open (O,">$0.connect.cds.fa");
for my $k1 (sort keys %seq){
print O ">$k1\n$seq{$k1}\n";
}
close O;
然后,继续使用脚本将fasta序列转换为axt格式,在使用脚本提取4倍简并位点。
mfa_to_axt.pl
#!/usr/bin/perl
use strict;
##Author: Fan Wei
##Email: fanw@genomic.org.cn
##Data: 2008-12-22
my $file = shift;
mfa2axt($file);
##get matrix of Ka and Ks from KaKs_caculator's result
sub mfa2axt{
my $mfa_file = shift;
my (%name_seq,%pair,$output);
open OUT, ">$mfa_file.axt" || die "fail $mfa_file.axt";
open IN, $mfa_file || die "fail open $mfa_file\n";
$/=">"; <IN>; $/="\n";
while (<IN>) {
my $name = $1 if(/^(\S+)/);
$/=">";
my $seq = <IN>;
chomp $seq;
$seq =~ s/\s//g;
$/="\n";
$name_seq{$name} = $seq;
}
close IN;
foreach my $first (sort keys %name_seq) {
foreach my $second (sort keys %name_seq) {
next if($first eq $second || exists $pair{"$second&$first"});
$pair{"$first&$second"} = 1;
}
}
foreach (sort keys %pair) {
if (/([^&]+)&([^&]+)/) {
print OUT $_."\n".$name_seq{$1}."\n".$name_seq{$2}."\n\n";
}
}
close OUT;
}
calculate_4DTV_correction.pl
#!/usr/bin/perl
use strict;
##author: sun ming'an, sunma@genomics.org.cn
##modifier: fanwei, fanw@genomics.org.cn
##correction: LiJun, junli@genomics.org.cn
##Date: 2008-9-24
##4dtv (transversion rate on 4-fold degenerated sites) are calculated with HKY substitution models
##Reference: M. Hasegawa, H. Kishino, and T. Yano, J. Mol. Evol. 22 (2), 160 (1985)
die "perl $0 AXTfile > outfile\n" unless( @ARGV == 1);
my %codons=(
'CTT'=>'L', 'CTC'=>'L', 'CTA'=>'L', 'CTG'=>'L',
'GTT'=>'V', 'GTC'=>'V', 'GTA'=>'V', 'GTG'=>'V',
'TCT'=>'S', 'TCC'=>'S', 'TCA'=>'S', 'TCG'=>'S',
'CCT'=>'P', 'CCC'=>'P', 'CCA'=>'P', 'CCG'=>'P',
'ACT'=>'T', 'ACC'=>'T', 'ACA'=>'T', 'ACG'=>'T',
'GCT'=>'A', 'GCC'=>'A', 'GCA'=>'A', 'GCG'=>'A',
'CGT'=>'R', 'CGC'=>'R', 'CGA'=>'R', 'CGG'=>'R',
'GGT'=>'G', 'GGC'=>'G', 'GGA'=>'G', 'GGG'=>'G');
my %transversion = (
"A" => "TC",
"C" => "AG",
"G" => "TC",
"T" => "AG",
);
my $axtFile = shift;
open(AXT,"$axtFile")||die"Cannot open $axtFile\n";
$/ = "\n\n";
my @seqs = <AXT>;
$/ ="\n";
close AXT;
print "tag\t4dtv_corrected\t4dtv_raw\tcondon_4d\tcodon_4dt\n";
foreach my $line ( @seqs ){
chomp $line;
if( $line =~ /^(\S+)\n(\S+)\n(\S+)$/ ){
my $tag = $1;
my $seq1 =$2;
my $seq2 =$3;
my ($corrected_4dtv, $raw_4dtv, $condon_4d, $codon_4dt) = &calculate_4dtv($seq1, $seq2);
print "$tag\t$corrected_4dtv\t$raw_4dtv\t$condon_4d\t$codon_4dt\n";
}
}
sub calculate_4dtv {
my($str1, $str2) = @_;
my ($condon_4d, $codon_4dt) = (0,0);
my ($V,$a,$b,$d) = (0,0,0,0);
my %fre=();
for( my $i = 0; $i < length($str1); $i += 3){
my $codon1 = substr($str1, $i, 3);
my $codon2 = substr($str2, $i, 3);
my $base1= uc(substr($str1, $i+2, 1));
my $base2= uc(substr($str2, $i+2, 1));
if( exists $codons{$codon1} && exists $codons{$codon2} && $codons{$codon1} eq $codons{$codon2} ){
$fre{$base1}++;
$fre{$base2}++;
$condon_4d++;
$codon_4dt++ if(is_transversion($codon1,$codon2));
}
}
if($condon_4d > 0){
$V=$codon_4dt / $condon_4d; ##this is raw 4dtv value
##correction the raw 4dtv values by HKY substitution model
$fre{"Y"}=$fre{"T"}+$fre{"C"};
$fre{"R"}=$fre{"A"}+$fre{"G"};
foreach (keys %fre){
$fre{$_}=0.5*$fre{$_}/$condon_4d;
}
if($fre{Y}!=0 && $fre{R}!=0 && $fre{A}!=0 && $fre{C}!=0 && $fre{G}!=0 && $fre{T}!=0){
$a=-1*log(1-$V*($fre{T}*$fre{C}*$fre{R}/$fre{Y}+$fre{A}*$fre{G}*$fre{Y}/$fre{R})/(2*($fre{T}*$fre{C}*$fre{R}+$fre{A}*$fre{G}*$fre{Y})));
if (1-$V/(2*$fre{Y}*$fre{R}) > 0) {
$b=-1*log(1-$V/(2*$fre{Y}*$fre{R}));
$d=2*$a*($fre{T}*$fre{C}/$fre{Y}+$fre{A}*$fre{G}/$fre{R})-2*$b*($fre{T}*$fre{C}*$fre{R}/$fre{Y}+$fre{A}*$fre{G}*$fre{Y}/$fre{R}-$fre{Y}*$fre{R});
}else{
$d = "NA";
}
}else{
$d = "NA";
}
}else{
$V="NA";
$d="NA";
}
return ($d,$V,$condon_4d, $codon_4dt);
}
sub is_transversion{
my ($codon1,$codon2) = @_;
my $is_transversion = 0;
my $base1 = substr($codon1,2,1);
my $base2 = substr($codon2,2,1);
$is_transversion = 1 if (exists $transversion{$base1} && $transversion{$base1} =~ /$base2/);
return $is_transversion;
}
3. 构建物种树
利用四倍简并位点,通过IQTREE、RAxML、Mrbayes等软件构建物种的系统发育树。
iqtree -s allSingleCopyOrthologsAlign.4Dsite.fas -m MFP -b 1000 -nt 5
raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T8 --seed 2 --threads 2 --bs-trees 200
4. 获取化石分歧时间
通过网站http://www.timetree.org/ ,该网站根据多篇文献支持提供两两物种间的分化时间,并给出置信度范围,单位是Mya(million years ago)。另外一个可以查询分化时间的网站是https://fossilcalibrations.org/ ,可以互相参考。
5. 估算物种分歧时间
-
step 1: 估计替换速率
输入文件:newick格式的系统发育树(不带分支长度)、四倍简并位点多序列比对文件、baseml控制文件
13 1
(((((((Ba,((Hm,(Mc,Kin)),Dp)),(Cc,Cn)),Pr),La),Pp),(Bm,Ha)),Dm)'@2.72';
注:必须标注末端时间节点(单位;亿年 )
seqfile = allSingleCopyOrthologsAlign.4Dsite.fas
treefile = species.tree0
outfile = mlb * main result file
noisy = 3 * 0,1,2,3: how much rubbish on the screen
verbose = 1 * 1: detailed output, 0: concise output
runmode = 0 * 0:user tree; 1:semi-automatic; 2:automatic
* 3:StepwiseAddition; (4,5):PerturbationNNI
model = 7 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:T92, 6:TN93, 7:REV
* 8:UNREST, 9:REVu; 10:UNRESTu
Mgene = 0 * 0:rates, 1:separate; 2:diff pi, 3:diff kappa, 4:all diff
clock = 1 * 0:no clock, 1:clock; 2:local clock; 3:CombinedAnalysis
fix_kappa = 0 * 0: estimate kappa; 1: fix kappa at value below
kappa = 2 * initial or fixed kappas
fix_alpha = 0 * 0: estimate alpha; 1: fix alpha at value below
alpha = 0.5 * initial or fixed alpha, 0:infinity (constant rate)
ncatG = 5 * # of categories in the dG, AdG, or nparK models of rates
fix_rho = 1 * 0: estimate rho; 1: fix rho at value below
rho = 0 * initial or fixed rho, 0:no correlation
Malpha = 0 * 1: different alpha's for genes, 0: one alpha
nparK = 0 * rate-class models. 1:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK
getSE = 1 * 0: don't want SEs of estimates, 1: want SEs
RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states
method = 0 * Optimization method 0: simultaneous; 1: one branch a time
Small_Diff = 0.5e-6
cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
fix_blength = 0 * 0: ignore, -1: random, 1: initial, 2: fixed
baseml baseml.ctl
输出文件中,会得到替换速率,用于mcmctree运算
-
step 2: 估计Gradient and Hessian of Branch Lengths
输入文件:newick格式的系统发育树(不带分支长度,带有多个化石校正时间)、四倍简并位点多序列比对文件、mcmctree控制文件
13 1
(((((((Ba,((Hm,(Mc,Kin))'B(58,84)',Dp)),(Cc,Cn)),Pr)'B(79,118)',La),Pp)'B(76,146)',(Bm,Ha)'B(100,122)'),Dm)'B(217,314)';
**注:单位百万年 **
seed = -1
seqfile = allSingleCopyOrthologsAlign.4Dsite.fas
treefile = species.tree1
outfile = out_usedata3
ndata = 1
usedata = 3 * 0: no data; 1:seq like; 2:normal approximation
clock = 3 * 1: global clock; 2: independent rates; 3: correlated rates
* RootAge = '<10' * constraint on root age, used if no fossil for root.
model = 7 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5 * alpha for gamma rates at sites
ncatG = 5 * No. categories in discrete gamma
cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
BDparas = 1 1 0 * birth, death, sampling
kappa_gamma = 6 2 * gamma prior for kappa
alpha_gamma = 1 1 * gamma prior for alpha
rgene_gamma = 1 2.288 * gamma prior for rate for genes ### 1/替换率
sigma2_gamma = 1 4.5 * gamma prior for sigma^2 (for clock=2 or 3)
finetune = 1: 0.06 0.5 0.006 0.12 0.4 * times, rates, mixing, paras, RateParas
print = 1
burnin = 500000
sampfreq = 5000
nsample = 20000
*** Note: Make your window wider (100 columns) when running this program.
mcmctree mcmctree3.ctl
-
step 3: 估算物种分歧时间
输入文件:newick格式的系统发育树(不带分支长度,带有多个化石校正时间)、四倍简并位点多序列比对文件、mcmctree控制文件、in.BV(由上一步分析获得)
mv out.BV in.BV
seed = -1
seqfile = allSingleCopyOrthologsAlign.4Dsite.fas
treefile = species.tree1
outfile = out_usedata2
ndata = 1
usedata = 2 * 0: no data; 1:seq like; 2:normal approximation
clock = 3 * 1: global clock; 2: independent rates; 3: correlated rates
* RootAge = '<10' * constraint on root age, used if no fossil for root.
model = 7 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5 * alpha for gamma rates at sites
ncatG = 5 * No. categories in discrete gamma
cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
BDparas = 1 1 0 * birth, death, sampling
kappa_gamma = 6 2 * gamma prior for kappa
alpha_gamma = 1 1 * gamma prior for alpha
rgene_gamma = 1 2.288 * gamma prior for rate for genes ### 1/替换率
sigma2_gamma = 1 4.5 * gamma prior for sigma^2 (for clock=2 or 3)
finetune = 1: 0.06 0.5 0.006 0.12 0.4 * times, rates, mixing, paras, RateParas
print = 1
burnin = 500000
sampfreq = 5000
nsample = 20000
*** Note: Make your window wider (100 columns) when running this program.
nohup mcmctree mcmctree2.ctl >mcmctree.ctl.log 2>&1 &;
6. 检测运行结果
最直接的检测方法是:分别使用不同的Seed值进行mcmctree或infinitesites进行两次或多次分析,然后比较两个结果树是否一致,实际就是比较树文件中各内部节点的Height值(分歧时间 / Posterior time)。计算各枝长总的偏差百分比,当偏差百分比低于0.1%,则认为两次结果非常吻合,差异低于0.1%,认为达到收敛。此外,还可以使用Tracer分析mcmc.txt文件,检测其ESS值,一般认为该值高于200,则可能达到收敛。该方法可用于辅助检测。最后,若不收敛,则需要提高burnin、nsample值,重新运行程序。
参考链接
- http://www.chenlianfu.com/?p=2974
- https://www.jianshu.com/p/f9e5fe95478d
- http://www.fish-evol.org/mcmctreeExampleVert6/text1Eng.html
- http://abacus.gene.ucl.ac.uk/software/MCMCtreeStepByStepManual.pdf
- https://dosreislab.github.io/2017/10/24/marginal-likelihood-mcmc3r.html
- http://nebc.nerc.ac.uk/bioinformatics/documentation/paml/doc/MCMCtreeDoc.pdf
网友评论