同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。
[检测分类相关]:
【1】 Cross-sensor Pore Detection in High-resolution Fingerprint Images using Unsupervised Domain Adaptation
基于无监督域自适应的高分辨率指纹图像跨传感器孔隙检测
作者: Vijay Anand, Vivek Kanhangad
链接:https://arxiv.org/abs/1908.10701
【2】 Self-supervised blur detection from synthetically blurred scenes
从合成模糊场景中进行自监督模糊检测
作者: Aitor Alvarez-Gila, Joost van de Weijer
链接:https://arxiv.org/abs/1908.10638
【3】 Online Sensor Hallucination via Knowledge Distillation for Multimodal Image Classification
基于知识蒸馏的在线传感器幻觉多模态图像分类
作者: Saurabh Kumar, Subhasis Chaudhuri
链接:https://arxiv.org/abs/1908.10559
【4】 A Global-Local Emebdding Module for Fashion Landmark Detection
一种用于时尚地标检测的全局-局部Emebdding模块
作者: Sumin Lee (1), (3) Hanbat National University)
备注:Accepted to ICCV 2019 Workshop: Computer Vision for Fashion, Art and Design
链接:https://arxiv.org/abs/1908.10548
【5】 An Effective and Efficient Method for Detecting Hands in Egocentric Videos for Rehabilitation Applications
一种用于康复应用的以自我为中心的视频中检测手的有效方法
作者: Ryan J. Visée, José Zariffa
链接:https://arxiv.org/abs/1908.10406
【6】 Revealing Backdoors, Post-Training, in DNN Classifiers via Novel Inference on Optimized Perturbations Inducing Group Misclassification
通过对优化扰动导致组错误分类的新推理揭示DNN分类器中的后门,训练后
作者: Zhen Xiang, George Kesidis
链接:https://arxiv.org/abs/1908.10498
[分割/语义相关]:
【1】 Fast Video Object Segmentation via Mask Transfer Network
基于掩模传输网络的快速视频对象分割
作者: Tao Zhuo, Mohan Kankanhalli
链接:https://arxiv.org/abs/1908.10717
【2】 SPair-71k: A Large-scale Benchmark for Semantic Correspondence
SPair-71K:大规模语义对应基准
作者: Juhong Min, Minsu Cho
备注:Extension of ICCV 2019 paper, Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features. arXiv admin note: text overlap with arXiv:1908.06537
链接:https://arxiv.org/abs/1908.10543
【3】 Transfer Learning from Partial Annotations for Whole Brain Segmentation
全脑分割中部分标注的迁移学习
作者: Chengliang Dai, Wenjia Bai
链接:https://arxiv.org/abs/1908.10851
【4】 CAMEL: A Weakly Supervised Learning Framework for Histopathology Image Segmentation
CAMEL:一种用于组织病理学图像分割的弱监督学习框架
作者: Gang Xu, Wei Xu
备注:10 pages, 9 figures, accepted by ICCV 2019
链接:https://arxiv.org/abs/1908.10555
【5】 Domain-Agnostic Learning with Anatomy-Consistent Embedding for Cross-Modality Liver Segmentation
基于解剖一致性嵌入的域不可知学习用于跨模态肝脏分割
作者: Junlin Yang, James S. Duncan
链接:https://arxiv.org/abs/1908.10489
【6】 Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation
拥抱不完美数据集:医学图像分割深度学习解决方案综述
作者: Nima Tajbakhsh, Xiaowei Ding
链接:https://arxiv.org/abs/1908.10454
[人脸相关]:
【1】 Facial age estimation by deep residual decision making
基于深度残差决策的人脸年龄估计
作者: Shichao Li, Kwang-Ting Cheng
链接:https://arxiv.org/abs/1908.10737
【2】 CASIA-SURF: A Large-scale Multi-modal Benchmark for Face Anti-spoofing
CASIA-SURF:面向人脸反欺骗的大规模多模态基准测试
作者: Shifeng Zhang, Stan Z. Li
备注:Journal extension of our previous conference paper: arXiv:1812.00408
链接:https://arxiv.org/abs/1908.10654
【3】 BioFaceNet: Deep Biophysical Face Image Interpretation
BioFaceNet:深度生物物理人脸图像解释
作者: Sarah Alotaibi, William Smith
备注:Accepted to BMVC2019
链接:https://arxiv.org/abs/1908.10578
[GAN/对抗式/生成式相关]:
【1】 Adversarial Representation Learning for Text-to-Image Matching
用于文本到图像匹配的对抗性表示学习
作者: Nikolaos Sarafianos, Ioannis A. Kakadiaris
备注:To appear in ICCV 2019
链接:https://arxiv.org/abs/1908.10534
【2】 Adversarial regression training for visualizing the progression of chronic obstructive pulmonary disease with chest x-rays
用胸部X光观察慢性阻塞性肺疾病进展的对抗性回归训练
作者: Ricardo Bigolin Lanfredi, Tolga Tasdizen
备注:Accepted for MICCAI 2019
链接:https://arxiv.org/abs/1908.10468
[行为/时空/光流/姿态/运动]:
【1】 Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video
单目视频的无监督尺度一致深度和自我运动学习
作者: Jia-Wang Bian, Ian Reid
链接:https://arxiv.org/abs/1908.10553
[半/弱/无监督相关]:
【1】 Adaptive Reconstruction Network for Weakly Supervised Referring Expression Grounding
弱监督指代表达的自适应重构网络
作者: Xuejing Liu, Qingming Huang
备注:Accepted by ICCV 2019
链接:https://arxiv.org/abs/1908.10568
【2】 Consistent Cross-view Matching for Unsupervised Person Re-identification
用于无监督人员重新识别的一致交叉视图匹配
作者: Xueping Wang, Amit K Roy-Chowdhury
链接:https://arxiv.org/abs/1908.10486
【3】 Self-Supervised Representation Learning via Neighborhood-Relational Encoding
基于邻域关系编码的自监督表示学习
作者: Mohammad Sabokrou, Ehsan Adeli
备注:Accepted in International Conference on Computer Vision (ICCV) 2019
链接:https://arxiv.org/abs/1908.10455
【4】 Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging
用于4D腹部和宫内磁共振成像的自监督递归神经网络
作者: Tong Zhang, Maria Deprez
备注:Accepted by MICCAI 2019 workshop on Machine Learning for Medical Image Reconstruction
链接:https://arxiv.org/abs/1908.10842
[跟踪相关]:
【1】 SMART tracking: Simultaneous anatomical imaging and real-time passive device tracking for MR-guided interventions
智能跟踪:同时进行解剖成像和实时被动设备跟踪,用于MR引导的干预
作者: Frank Zijlstra, Peter R. Seevinck
链接:https://arxiv.org/abs/1908.10769
[迁移学习/domain/主动学习/自适应]:
【1】 Heterogeneous Domain Adaptation via Soft Transfer Network
通过软传输网络的异构域适配
作者: Yuan Yao, Yunming Ye
备注:Accepted by ACM Multimedia (ACM MM) 2019
链接:https://arxiv.org/abs/1908.10552
[Re-id相关]:
【1】 Orthogonal Center Learning with Subspace Masking for Person Re-Identification
带掩蔽子空间的正交中心学习用于人的再识别
作者: Weinong Wang, Yu-Wing Tai
链接:https://arxiv.org/abs/1908.10535
[视频理解VQA/caption等]:
【1】 Image Captioning with Sparse Recurrent Neural Network
基于稀疏回归神经网络的图像字幕
作者: Jia Huei Tan, Joon Huang Chuah
链接:https://arxiv.org/abs/1908.10797
[数据集dataset]:
【1】 Image Harmonization Datasets: HCOCO, HAdobe5k, HFlickr, and Hday2night
图像协调数据集:HCOCO、HADOBE5k、HFlickr和Hday2night
作者: Wenyan Cong, Liqing Zhang
链接:https://arxiv.org/abs/1908.10526
[其他视频相关]:
【1】 Explainable Video Action Reasoning via Prior Knowledge and State Transitions
通过先验知识和状态转换进行可解释的视频动作推理
作者: Tao Zhuo, Mohan Kankanhalli
链接:https://arxiv.org/abs/1908.10700
[其他]:
【1】 Attention-based Fusion for Outfit Recommendation
基于注意力的服装推荐融合
作者: Katrien Laenen, Marie-Francine Moens
链接:https://arxiv.org/abs/1908.10585
【2】 Fingerspelling recognition in the wild with iterative visual attention
具有迭代视觉注意的野外手指拼写识别
作者: Bowen Shi, Karen Livescu
备注:ICCV 2019
链接:https://arxiv.org/abs/1908.10546
【3】 Improving Visual Feature Extraction in Glacial Environments
改进冰川环境下的视觉特征提取
作者: Steven D. Morad, Kobus Barnard
链接:https://arxiv.org/abs/1908.10425
【4】 Method and System for Image Analysis to Detect Cancer
用于图像分析以检测癌症的方法和系统
作者: Waleed A. Yousef, Naglaa M. Abdelrazek
链接:https://arxiv.org/abs/1908.10661
【5】 A Coarse-to-Fine Multi-stream Hybrid Deraining Network for Single Image Deraining
一种适用于单幅图像的粗精多流混合导引网络
作者: Yanyan Wei, Meng Wang
备注:Accepted by ICDM 2019 as a regular paper
链接:https://arxiv.org/abs/1908.10521
【6】 O-MedAL: Online Active Deep Learning for Medical Image Analysis
O-Medine:用于医学图像分析的在线主动深度学习
作者: Asim Smailagic, Hae Young Noh
链接:https://arxiv.org/abs/1908.10508
【7】 Complex Deep Learning Models for Denoising of Human Heart ECG signals
复杂深度学习模型在心电信号去噪中的应用
作者: Corneliu Arsene
链接:https://arxiv.org/abs/1908.10417
【8】 Visualization of Very Large High-Dimensional Data Sets as Minimum Spanning Trees
将非常大的高维数据集可视化为最小生成树
作者: Daniel Probst, Jean-Louis Reymond
链接:https://arxiv.org/abs/1908.10410
机器翻译,仅供参考
网友评论