Bedtools使用

作者: 生信宝典 | 来源:发表于2018-04-26 17:05 被阅读57次

    欢迎关注天下博客:http://blog.genesino.com/2018/04/bedtools/
    Jump to...

    1. 内容摘要
    2. 功能列表
    3. 安装bedtools
    4. 获得测试数据集(http://quinlanlab.org/tutorials/bedtools/bedtools.html)
    5. 交集 (intersect)
    6. 合并区域
    7. 计算互补区域
    8. 基因组覆盖广度和深度
    9. 数据集相似性

    Bedtools是处理基因组信息分析的强大工具集合,其主要功能如下:

    Bedtools是处理基因组信息分析的强大工具集合,本文列出自己学习其官方文档的几个点,对后面计算不同样品peak相似性的脚本做了下更新和调整,使用起来更为简单方便。

    内容摘要

    1. 区域注释,如peak注释,peak分布分析,peak与调控元件交集等。
    2. 区域合并,如求算多样品peak合集,或合并重叠区域
    3. 区域互补,如得到非基因区
    4. 利用比对结果对测序广度和深度评估
    5. 多样品peak相似性计算,评估ChIP类区域结果的样品相似性。

    功能列表

    bedtools: flexible tools for genome arithmetic and DNA sequence analysis.
    
    usage:    bedtools <subcommand> [options]
    
    The bedtools sub-commands include:
    
    [ Genome arithmetic ]
    
        intersect     Find overlapping intervals in various ways.
    
                      求区域之间的交集,可以用来注释peak,计算reads比对到的基因组区域
                      不同样品的peak之间的peak重叠情况。
    
        window        Find overlapping intervals within a window around an interval.
        closest       Find the closest, potentially non-overlapping interval.
    
                      寻找最近但可能不重叠的区域
    
        coverage      Compute the coverage over defined intervals.
    
                      计算区域覆盖度
    
        map           Apply a function to a column for each overlapping interval.
        genomecov     Compute the coverage over an entire genome.
        merge         Combine overlapping/nearby intervals into a single interval.
    
                      合并重叠或相接的区域
    
        cluster       Cluster (but don't merge) overlapping/nearby intervals.
        complement    Extract intervals _not_ represented by an interval file.
    
                      获得互补区域
    
        subtract      Remove intervals based on overlaps b/w two files.
    
                      计算区域差集
    
        slop          Adjust the size of intervals.
    
                      调整区域大小,如获得转录起始位点上下游3 K的区域
    
        flank         Create new intervals from the flanks of existing intervals.
    
        sort          Order the intervals in a file.
    
                      排序,部分命令需要排序过的bed文件
    
        random        Generate random intervals in a genome.
    
                      获得随机区域,作为背景集
    
        shuffle       Randomly redistrubute intervals in a genome.
    
                      根据给定的bed文件获得随机区域,作为背景集
    
        sample        Sample random records from file using reservoir sampling.
        spacing       Report the gap lengths between intervals in a file.
        annotate      Annotate coverage of features from multiple files.
    
    [ Multi-way file comparisons ]
    
        multiinter    Identifies common intervals among multiple interval files.
        unionbedg     Combines coverage intervals from multiple BEDGRAPH files.
    
    [ Paired-end manipulation ]
    
        pairtobed     Find pairs that overlap intervals in various ways.
        pairtopair    Find pairs that overlap other pairs in various ways.
    
    [ Format conversion ]
    
        bamtobed      Convert BAM alignments to BED (& other) formats.
        bedtobam      Convert intervals to BAM records.
        bamtofastq    Convert BAM records to FASTQ records.
        bedpetobam    Convert BEDPE intervals to BAM records.
        bed12tobed6   Breaks BED12 intervals into discrete BED6 intervals.
    
    [ Fasta manipulation ]
    
        getfasta      Use intervals to extract sequences from a FASTA file.
    
                      提取给定位置的FASTA序列
    
        maskfasta     Use intervals to mask sequences from a FASTA file.
        nuc           Profile the nucleotide content of intervals in a FASTA file.
    
    [ BAM focused tools ]
    
        multicov      Counts coverage from multiple BAMs at specific intervals.
        tag           Tag BAM alignments based on overlaps with interval files.
    
    [ Statistical relationships ]
    
        jaccard       Calculate the Jaccard statistic b/w two sets of intervals.
    
                      计算数据集相似性
    
        reldist       Calculate the distribution of relative distances b/w two files.
        fisher        Calculate Fisher statistic b/w two feature files.
    
    [ Miscellaneous tools ]
    
        overlap       Computes the amount of overlap from two intervals.
        igv           Create an IGV snapshot batch script.
    
                      用于生成一个脚本,批量捕获IGV截图
    
        links         Create a HTML page of links to UCSC locations.
    
        makewindows   Make interval "windows" across a genome.
    
                      把给定区域划分成指定大小和间隔的小区间 (bin)
    
        groupby       Group by common cols. & summarize oth. cols. (~ SQL "groupBy")
    
                      分组结算,不只可以用于bed文件。
    
        expand        Replicate lines based on lists of values in columns.
        split         Split a file into multiple files with equal records or base pairs.
    
    

    安装bedtools

    Linux - Conda软件安装方法

    ct@ehbio:~$ conda install bedtools
    
    

    获得测试数据集(http://quinlanlab.org/tutorials/bedtools/bedtools.html)

    ct@ehbio:~$ mkdir bedtools
    ct@ehbio:~$ cd bedtools
    ct@ehbio:~$ url=https://s3.amazonaws.com/bedtools-tutorials/web
    ct@ehbio:~/bedtools$ curl -O ${url}/maurano.dnaseI.tgz
    ct@ehbio:~/bedtools$ curl -O ${url}/cpg.bed
    ct@ehbio:~/bedtools$ curl -O ${url}/exons.bed
    ct@ehbio:~/bedtools$ curl -O ${url}/gwas.bed
    ct@ehbio:~/bedtools$ curl -O ${url}/genome.txt
    ct@ehbio:~/bedtools$ curl -O ${url}/hesc.chromHmm.bed
    
    

    交集 (intersect)

    bedtools intersect

    查看输入文件,bed格式,至少三列,分别是染色体起始位置(0-based,

    包括),终止位置

    (1-based,不包括)。第四列一般为区域名字,第五列一般为空,第六列为链的信息。更详细解释见http://www.genome.ucsc.edu/FAQ/FAQformat.html#format1

    自己做研究CpG岛信息可以从UCSC的Table Browser获得,具体操作见http://blog.genesino.com/2013/05/ucsc-usages/

    ct@ehbio:~/bedtools$ head -n 3 cpg.bed exons.bed
    
    ==> cpg.bed <==
    
    chr1    28735   29810   CpG:_116
    chr1    135124  135563  CpG:_30
    chr1    327790  328229  CpG:_29
    
    ==> exons.bed <==
    
    chr1    11873   12227   NR_046018_exon_0_0_chr1_11874_f 0   +
    chr1    12612   12721   NR_046018_exon_1_0_chr1_12613_f 0   +
    chr1    13220   14409   NR_046018_exon_2_0_chr1_13221_f 0   +
    
    

    获得重叠区域(既是外显子,又是CpG岛的区域)

    ct@ehbio:~/bedtools$ bedtools intersect -a cpg.bed -b exons.bed | head -5
    
    chr1    29320   29370   CpG:_116
    chr1    135124  135563  CpG:_30
    chr1    327790  328229  CpG:_29
    chr1    327790  328229  CpG:_29
    chr1    327790  328229  CpG:_29
    
    

    输出重叠区域对应的原始区域(与外显子存在交集的CpG岛)

    ct@ehbio:~/bedtools$ bedtools intersect -a cpg.bed -b exons.bed -wa -wb > | head -5
    
    
    • chr1 28735 29810 CpG:_116 chr1 29320 29370

      NR_024540_exon_10_0_chr1_29321_r 0 -

    • chr1 135124 135563 CpG:_30 chr1 134772 139696

      NR_039983_exon_0_0_chr1_134773_r 0 -

    • chr1 327790 328229 CpG:_29 chr1 324438 328581

      NR_028322_exon_2_0_chr1_324439_f 0 +

    • chr1 327790 328229 CpG:_29 chr1 324438 328581

      NR_028325_exon_2_0_chr1_324439_f 0 +

    • chr1 327790 328229 CpG:_29 chr1 327035 328581

      NR_028327_exon_3_0_chr1_327036_f 0 +

    计算重叠碱基数

    ct@ehbio:~/bedtools$ bedtools intersect -a cpg.bed -b exons.bed -wo | head -10
    
    
    • chr1 28735 29810 CpG:_116 chr1 29320 29370

      NR_024540_exon_10_0_chr1_29321_r 0 - 50

    • chr1 135124 135563 CpG:_30 chr1 134772 139696

      NR_039983_exon_0_0_chr1_134773_r 0 - 439

    • chr1 327790 328229 CpG:_29 chr1 324438 328581

      NR_028322_exon_2_0_chr1_324439_f 0 + 439

    • chr1 327790 328229 CpG:_29 chr1 324438 328581

      NR_028325_exon_2_0_chr1_324439_f 0 + 439

    • chr1 327790 328229 CpG:_29 chr1 327035 328581

      NR_028327_exon_3_0_chr1_327036_f 0 + 439

    • chr1 713984 714547 CpG:_60 chr1 713663 714068

      NR_033908_exon_6_0_chr1_713664_r 0 - 84

    • chr1 762416 763445 CpG:_115 chr1 761585 762902

      NR_024321_exon_0_0_chr1_761586_r 0 - 486

    • chr1 762416 763445 CpG:_115 chr1 762970 763155

      NR_015368_exon_0_0_chr1_762971_f 0 + 185

    • chr1 762416 763445 CpG:_115 chr1 762970 763155

      NR_047519_exon_0_0_chr1_762971_f 0 + 185

    • chr1 762416 763445 CpG:_115 chr1 762970 763155

      NR_047520_exon_0_0_chr1_762971_f 0 + 185

    计算第一个(-a)bed区域有多少个重叠的第二个(-b)bed文件中有多少个区域

    ct@ehbio:~/bedtools$ bedtools intersect -a cpg.bed -b exons.bed -c | head
    
    chr1    28735   29810   CpG:_116    1
    chr1    135124  135563  CpG:_30 1
    chr1    327790  328229  CpG:_29 3
    chr1    437151  438164  CpG:_84 0
    chr1    533219  534114  CpG:_94 0
    chr1    544738  546649  CpG:_171    0
    chr1    713984  714547  CpG:_60 1
    chr1    762416  763445  CpG:_115    10
    chr1    788863  789211  CpG:_28 9
    
    

    另外还有-v取出不重叠的区域,

    -f限定重叠最小比例,-sorted可以对按sort -k1,1 -k2,2n排序好的文件加速操作。

    同时对多个区域求交集 (可以用于peak的多维注释)

    # -names标注注释来源
    # -sorted: 如果使用了这个参数,提供的一定是排序好的bed文件
    
    ct@ehbio:~/bedtools$ bedtools intersect -a exons.bed \
        -b cpg.bed gwas.bed hesc.chromHmm.bed -sorted -wa -wb -names cpg gwas chromhmm \
        | head -10000  | tail -10
    
    
    • chr1 27632676 27635124

      NM_001276252_exon_15_0_chr1_27632677_chromhmm chr1 27633213

      27635013 5_Strong_Enhancer

    • chr1 27632676 27635124

      NM_001276252_exon_15_0_chr1_27632677_chromhmm chr1 27635013

      27635413 7_Weak_Enhancer

    • chr1 27632676 27635124 NM_015023_exon_15_0_chr1_27632677_f

      chromhmm chr1 27632613 27632813 6_Weak_Enhancer

    • chr1 27632676 27635124 NM_015023_exon_15_0_chr1_27632677_f

      chromhmm chr1 27632813 27633213 7_Weak_Enhancer

    • chr1 27632676 27635124 NM_015023_exon_15_0_chr1_27632677_f

      chromhmm chr1 27633213 27635013 5_Strong_Enhancer

    • chr1 27632676 27635124 NM_015023_exon_15_0_chr1_27632677_f

      chromhmm chr1 27635013 27635413 7_Weak_Enhancer

    • chr1 27648635 27648882 NM_032125_exon_0_0_chr1_27648636_f cpg

      chr1 27648453 27649006 CpG:_63

    • chr1 27648635 27648882 NM_032125_exon_0_0_chr1_27648636_f

      chromhmm chr1 27648613 27649413 1_Active_Promoter

    • chr1 27648635 27648882 NR_037576_exon_0_0_chr1_27648636_f cpg

      chr1 27648453 27649006 CpG:_63

    • chr1 27648635 27648882 NR_037576_exon_0_0_chr1_27648636_f

      chromhmm chr1 27648613 27649413 1_Active_Promoter

    合并区域

    bedtools merge

    bedtools merge输入的是按sort -k1,1 -k2,2n排序好的bed文件。

    只需要输入一个排序好的bed文件,默认合并重叠或邻接区域。

    ct@ehbio:~/bedtools$ bedtools merge -i exons.bed | head -n 5
    
    chr1    11873   12227
    chr1    12612   12721
    chr1    13220   14829
    chr1    14969   15038
    chr1    15795   15947
    
    

    合并区域并输出此合并后区域是由几个区域合并来的

    ct@ehbio:~/bedtools$ bedtools merge -i exons.bed -c 1 -o count | head -n 5
    
    chr1    11873   12227   1
    chr1    12612   12721   1
    chr1    13220   14829   2
    chr1    14969   15038   1
    chr1    15795   15947   1
    
    

    合并相距90 nt内的区域,并输出是由哪些区域合并来的

    # -c: 指定对哪些列进行操作
    # -o: 与-c对应,表示对指定列进行哪些操作
    # 这里的用法是对第一列做计数操作,输出这个区域是由几个区域合并来的
    # 对第4列做收集操作,记录合并的区域的名字,并逗号分隔显示出来
    
    ct@ehbio:~/bedtools$ bedtools merge -i exons.bed -d 340 -c 1,4 -o count,collapse | head -4
    
    chr1    11873   12227   1   NR_046018_exon_0_0_chr1_11874_f
    chr1    12612   12721   1   NR_046018_exon_1_0_chr1_12613_f
    chr1    13220   15038   3   NR_046018_exon_2_0_chr1_13221_f,NR_024540_exon_0_0_chr1_14362_r,NR_024540_exon_1_0_chr1_14970_r
    chr1    15795   15947   1   NR_024540_exon_2_0_chr1_15796_r
    
    

    计算互补区域

    给定一个全集,再给定一个子集,求另一个子集。比如给定每条染色体长度和外显子区域,求非外显子区域。给定基因区,求非基因区。给定重复序列,求非重复序列等。

    重复序列区域的获取也可以用下面提供的链接: http://blog.genesino.com/2013/05/ucsc-usages/

    ct@ehbio:~/bedtools$ head genome.txt 
    
    chr1    249250621
    chr10   135534747
    chr11   135006516
    chr11_gl000202_random   40103
    chr12   133851895
    chr13   115169878
    chr14   107349540
    chr15   102531392
    
    ct@ehbio:~/bedtools$ bedtools complement -i exons.bed -g genome.txt | head -n 5
    
    chr1    0   11873
    chr1    12227   12612
    chr1    12721   13220
    chr1    14829   14969
    chr1    15038   15795
    
    

    基因组覆盖广度和深度

    计算基因组某个区域是否被覆盖,覆盖深度多少。有下图多种输出格式,也支持RNA-seq数据,计算junction-reads覆盖。

    bedtools genomecov

    genome.txt里面的内容就是染色体及对应的长度。

    # 对单行FASTA,可如此计算
    # 如果是多行FASTA,则需要累加
    
    ct@ehbio:~/bedtools$ awk 'BEGIN{OFS=FS="\t"}{\
        if($0~/>/) {seq_name=$0;sub(">","",seq_name);} \
        else {print seq_name,length;} }' ../bio/genome.fa | tee ../bio/genome.txt 
    
    chr1    60001
    chr2    54001
    chr3    54001
    chr4    60001
    
    ct@ehbio:~/bedtools$ bedtools genomecov -ibam ../bio/map.sortP.bam -bga \
        -g ../bio/genome.txt | head
    
    # 这个warning很有意思,因为BAM中已经有这个信息了,就不需要提供了
    
    *****
    *****WARNING: Genome (-g) files are ignored when BAM input is provided. 
    *****
    
    # bedgraph文件,前3列与bed相同,最后一列表示前3列指定的区域的覆盖度。
    
    chr1    0   11  0
    chr1    11  17  1
    chr1    17  20  2
    chr1    20  31  3
    chr1    31  36  4
    chr1    36  43  6
    chr1    43  44  7
    chr1    44  46  8
    chr1    46  48  9
    chr1    48  54  10
    
    

    两个思考题:

    1. 怎么计算有多少基因组区域被测到了?
    1. 怎么计算平均测序深度是多少?

    数据集相似性

    bedtools jaccard计算的是给定的两个bed文件之间交集区域(intersection)占总区域(union-intersection)的比例(jaccard)和交集的数目(n_intersections)。

    ct@ehbio:~/bedtools$ bedtools jaccard \
        -a fHeart-DS16621.hotspot.twopass.fdr0.05.merge.bed \
        -b fHeart-DS15839.hotspot.twopass.fdr0.05.merge.bed
    
    intersection    union-intersection  jaccard n_intersections
    81269248    160493950   0.50637 130852
    
    

    小思考:1. 如何用bedtools其它工具算出这个结果?2. 如果需要比较的文件很多,怎么充分利用计算资源?

    一个办法是使用for循环,

    双层嵌套。这种用法也很常见,不管是单层还是双层for循环,都有利于简化重复运算。

    ct@ehbio:~/bedtools$ for i in *.merge.bed; do \
        for j in *.merge.bed; do \
        bedtools jaccard -a $i -b $j | cut -f3 | tail -n +2 | sed "s/^/$i\t$j\t/"; \
        done; done >total.similarity
    
    

    另一个办法是用parallel,不只可以批量,更可以并行。

    root@ehbio:~# yum install parallel.noarch
    # parallel 后面双引号("")内的内容为希望用parallel执行的命令,
    # 整体写法与Linux下命令写法一致。
    # 双引号后面的 三个相邻冒号 (:::)默认用来传递参数的,可多个连写。
    # 每个三冒号后面的参数会被循环调用,而在命令中的引用则是根据其出现的位置,分别用{1}, {2}
    # 表示第一个三冒号后的参数,第二个三冒号后的参数。
    #
    # 这个命令可以替换原文档里面的整合和替换, 相比于原文命令生成多个文件,这里对每个输出结果
    # 先进行了比对信息的增加,最后结果可以输入一个文件中。
    #
    
    ct@ehbio:~/bedtools$ parallel "bedtools jaccard -a {1} -b {2} | awk 'NR> | cut -f 3 \
        | sed 's/^/{1}\t{2}\t/'" ::: `ls *.merge.bed` ::: `ls *.merge.bed`  >totalSimilarity.2
    
    # 上面的命令也有个小隐患,并行计算时的输出冲突问题,可以修改为输出到单个文件,再cat到一起
    ct@ehbio:~/bedtools$ parallel "bedtools jaccard -a {1} -b {2} | awk 'NR> | cut -f 3 \
        | sed 's/^/{1}\t{2}\t/' >{1}.{2}.totalSimilarity_tmp" ::: `ls *.merge.bed` ::: `ls *.merge.bed` 
    ct@ehbio:~/bedtools$ cat *.totalSimilarity_tmp >totalSimilarity.2
    
    # 替换掉无关信息
    
    ct@ehbio:~/bedtools$ sed -i -e 's/.hotspot.twopass.fdr0.05.merge.bed//' \
        -e 's/.hg19//' totalSimilarity.2  
    
    

    totalSimilarity.2数据表格式如下 (数据是假的):

    fMusle_leg-DS19115  fMusle_back-DS18454 0.55
    fMusle_leg-DS19115  fHeart-DS15643  0.4
    fHeart-DS15643  fHeart-DS16621  0.8
    fHeart-DS15643  fHeart-DS15839  0.7
    fHeart-DS16621  fHeart-DS15839  0.7
    
    

    得到结果后,就可以绘制相关性热图PCA了。

    [图片上传失败...(image-f68e-1524733427640)]

    也可以使用下面的命令转换成Wide format矩阵,用高颜值可定制在线绘图工具-第三版绘制。

    # 这里面b和c可以用一个,因为是一个对称阵
    # 如果2和3列内容不同,此脚本也可用
    ct@ehbio:~/bedtools$ awk 'BEGIN{OFS=FS="\t"}{a[$1, $2]=$3; b[$1]=1; c[$2]=1;}END\
        {printf("ID"); for(i in c) printf("\t%s",  i); \
            for (i in b) {printf("%s", i); for(j in c) {printf("\t%s", a[i, j]);} print "";}}
    
    

    原文档(http://quinlanlab.org/tutorials/bedtools/bedtools.html)的命令,稍微有些复杂,利于学习不同命令的组合。使用时推荐使用上面的命令。

    ct@ehbio:~/bedtools$ parallel "bedtools jaccard -a {1} -b {2} \
          | awk 'NR>1' | cut -f 3 \
          > {1}.{2}.jaccard" \
         ::: `ls *.merge.bed` ::: `ls *.merge.bed`
    
    

    This command will create a single file containing the pairwise Jaccard

    measurements from all 400 tests.

    find . \
    
        | grep jaccard \
        | xargs grep "" \
        | sed -e s"/\.\///" \
        | perl -pi -e "s/.bed./.bed\t/" \
        | perl -pi -e "s/.jaccard:/\t/" \
        > pairwise.dnase.txt
    
    

    A bit of cleanup to use more intelligible names for each of the samples.

    cat pairwise.dnase.txt \
    | sed -e 's/.hotspot.twopass.fdr0.05.merge.bed//g' \
    | sed -e 's/.hg19//g' \
    > pairwise.dnase.shortnames.txt
    
    

    Now let’s make a 20x20 matrix of the Jaccard statistic. This will allow

    the data to play nicely with R.

    awk 'NF==3' pairwise.dnase.shortnames.txt \
    | awk '$1 ~ /^f/ && $2 ~ /^f/' \
    | python make-matrix.py \
    > dnase.shortnames.distance.matrix
    
    

    在广大粉丝的期待下,《生信宝典》联合《宏基因组》于2018年4月14在北京鼓楼推出《ChIP-seq分析专题培训》,为大家提供一条走进生信大门的捷径、为同行提供一个ChIP-seq实战分析学习和交流的机会、助力学员真正理解分析原理和完成实战分析, 独创线下集中授课2天+自行练习5天+再集中讲解答疑2天+后期学习群的四段式教学,并提供学习视频,教、学、练、答结合,真正实现独立分析大数据。

    关于学习生物信息学分析的重要性,请阅读《生物信息9天速成班—成为团队中不可或缺的人》

    ChIP-seq基本分析流程见流程。课程将在这个基础上,提供更深入地分析指导。

    课程介绍

    1. 座位按报名并成功缴费顺序从前到后龙摆尾式排序。
    2. 赠送价值188元线上生信基础课程一门,目前的《应用Python处理生物信息数据和作图》、《生物信息作图系列R、Cytoscape及图形排版》和《生物信息中的Linux应用》任选其一。
    3. 获赠32G品牌定制U盘 (内含数据资料)。
    4. 多人(N,10>N>1)组团报名并同时缴费,每人还可获得价值N百元的礼品(京东购物卡)。

    <footer class="entry-meta" style="box-sizing: border-box; display: block; font-size: 0.75rem; text-transform: uppercase; color: rgba(187, 187, 187, 0.8); margin: 50px 30px 30px; text-align: center; font-family: Lato, Calibri, Arial, sans-serif; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">RBIOINFOCHENTONG
    版权声明:本文为博主原创文章,转载请注明出处。

    alipay.png WeChatPay.png

    </footer>

    相关文章

      网友评论

        本文标题:Bedtools使用

        本文链接:https://www.haomeiwen.com/subject/fvdmlftx.html