波动方程题

作者: Raow1 | 来源:发表于2021-04-08 22:38 被阅读0次
    2016-1-9. 求解下列波动方程的柯西问题

    \begin{align*} & \frac{\partial^2 u(t,x,y,z)}{\partial t^2} = \Delta u(t,x,y,z), \quad t>0, \quad (x,y,z) \in \mathbb R^3 \\ & u(0,x,y,z)=\tanh (x-y+z), \quad (x,y,z) \in \mathbb R^3 \\ & \frac{\partial u(0,x,y,z)}{\partial t}=0, \quad (x,y,z) \in \mathbb R^3 \end{align*}

    由题,有u(t,x,y,z)=f(t,\xi),\quad \xi =x-y+z

    以上问题转化为如下形式
    \begin{align*} & \frac{\partial^2 f(t,\xi)}{\partial t^2} = 3\Delta f(t,\xi), \quad t>0, \quad \xi \in \mathbb R\\ & f(0,\xi)=\tanh (\xi), \quad \xi \in \mathbb R \\ & \frac{\partial f(0,\xi)}{\partial t}=0, \quad \xi \in \mathbb R \end{align*}
    因此,由达朗贝尔公式知,
    f(t,\xi)=\frac{1}{2}[\tanh(\xi +\sqrt 3 t)+\tanh (\xi - \sqrt 3 t)]
    所以有,
    u(t,x,y,z)=\frac{1}{2}[\tanh(x-y+z +\sqrt 3 t)+\tanh (x-y+z - \sqrt 3 t)]

    2016-2-9. 求解下列波动方程的柯西问题

    \begin{align*} & \frac{\partial^2 u(t,x,y,z)}{\partial t^2} = \Delta u(t,x,y,z), \quad t>0, \quad (x,y,z) \in \mathbb R^3 \\ & u(0,x,y,z)=0, \quad (x,y,z) \in \mathbb R^3 \\ & \frac{\partial u(0,x,y,z)}{\partial t}=\frac{1}{1+(x+2y+2z)^2}, \quad (x,y,z) \in \mathbb R^3 \end{align*}

    由题,有u(t,x,y,z)=f(t,\xi),\quad \xi =x+2y+2z

    以上问题转化为如下形式
    \begin{align*} & \frac{\partial^2 f(t,\xi)}{\partial t^2} = 9\Delta f(t,\xi), \quad t>0, \quad \xi \in \mathbb R\\ & f(0,\xi)=0, \quad \xi \in \mathbb R \\ & \frac{\partial f(0,\xi)}{\partial t}=\frac{1}{1+\xi ^2}, \quad \xi \in \mathbb R \end{align*}
    因此,由达朗贝尔公式知,
    f(t,\xi)=\frac{1}{2 \times 3}\int^{\xi + 3t}_{\xi -3t} \frac{d \eta}{1+\eta ^2}=\frac{1}{6}[\arctan(\xi +3t)-\arctan(\xi -3t)]
    所以有,
    u(t,x,y,z)=\frac{1}{6}[\arctan(x+2y+2z +3t)-\arctan(x+2y+2z -3t)]

    2016-3-9. 求解下列波动方程的柯西问题

    \begin{align*} & \frac{\partial^2 u(t,x,y,z)}{\partial t^2} = \Delta u(t,x,y,z), \quad t>0, \quad (x,y,z) \in \mathbb R^3 \\ & u(0,x,y,z)=\arctan (x+2y-z), \quad (x,y,z) \in \mathbb R^3 \\ & \frac{\partial u(0,x,y,z)}{\partial t}=0, \quad (x,y,z) \in \mathbb R^3 \end{align*}

    由题,有u(t,x,y,z)=f(t,\xi),\quad \xi =x+2y-z

    以上问题转化为如下形式
    \begin{align*} & \frac{\partial^2 f(t,\xi)}{\partial t^2} = 6\Delta f(t,\xi), \quad t>0, \quad \xi \in \mathbb R\\ & f(0,\xi)=\arctan(\xi), \quad \xi \in \mathbb R \\ & \frac{\partial f(0,\xi)}{\partial t}=0, \quad \xi \in \mathbb R \end{align*}
    因此,由达朗贝尔公式知,
    f(t,\xi)=\frac{1}{2}[\arctan(\xi-\sqrt{6}t)+\arctan(\xi+\sqrt6 t)]
    所以有,
    u(t,x,y,z)=\frac{1}{2}[\arctan(x+2y-z +\sqrt6 t)-\arctan(x+2y-z -\sqrt6 t)]

    2016-4-9. 求解下列波动方程的柯西问题

    \begin{align*} & \frac{\partial^2 u(t,x,y,z)}{\partial t^2} = \Delta u(t,x,y,z), \quad t>0, \quad (x,y,z) \in \mathbb R^3 \\ & u(0,x,y,z)=0, \quad (x,y,z) \in \mathbb R^3 \\ & \frac{\partial u(0,x,y,z)}{\partial t}=\frac{1}{\cosh^2(x-y-z)}, \quad (x,y,z) \in \mathbb R^3 \end{align*}

    由题,有u(t,x,y,z)=f(t,\xi),\quad \xi =x-y-z

    以上问题转化为如下形式
    \begin{align*} & \frac{\partial^2 f(t,\xi)}{\partial t^2} = 3\Delta f(t,\xi), \quad t>0, \quad \xi \in \mathbb R\\ & f(0,\xi)=0, \quad \xi \in \mathbb R \\ & \frac{\partial f(0,\xi)}{\partial t}=\frac{1}{\cosh^2(\xi)}, \quad \xi \in \mathbb R \end{align*}
    因此,由达朗贝尔公式知,
    f(t,\xi)=\frac{1}{2 \times \sqrt3}\int^{\xi + \sqrt3t}_{\xi -\sqrt3t} \frac{d \eta}{\cosh^2(\eta)}=\frac{1}{2\sqrt3}[\tanh(\xi +\sqrt3t)-\tanh(\xi -\sqrt3t)]
    所以有,
    u(t,x,y,z)=\frac{1}{2\sqrt3}[\tanh(x-y-z +\sqrt3t)-\tanh(x-y-z -\sqrt3t)]

    2016-5-9. 求解下列波动方程的柯西问题

    \begin{align*} & \frac{\partial^2 u(t,x,y,z)}{\partial t^2} = \Delta u(t,x,y,z), \quad t>0, \quad (x,y,z) \in \mathbb R^3 \\ & u(0,x,y,z)=\frac{1}{1+(2x+2y-z)^4}, \quad (x,y,z) \in \mathbb R^3 \\ & \frac{\partial u(0,x,y,z)}{\partial t}=0, \quad (x,y,z) \in \mathbb R^3 \end{align*}

    由题,有u(t,x,y,z)=f(t,\xi),\quad \xi =2x+2y-z

    以上问题转化为如下形式
    \begin{align*} & \frac{\partial^2 f(t,\xi)}{\partial t^2} = 9\Delta f(t,\xi), \quad t>0, \quad \xi \in \mathbb R\\ & f(0,\xi)=\frac{1}{1+\xi ^4}, \quad \xi \in \mathbb R \\ & \frac{\partial f(0,\xi)}{\partial t}=0, \quad \xi \in \mathbb R \end{align*}
    因此,由达朗贝尔公式知,
    f(t,\xi)=\frac{1}{2}[\frac{1}{1+(\xi -3t)^4} + \frac{1}{1+(\xi +3t)^4}]
    所以有,
    u(t,x,y,z)=\frac{1}{2}[\frac{1}{1+(2x+2y-z -3t)^4} + \frac{1}{1+(2x+2y-z +3t)^4}]

    2017-1-15. 求解下列波动方程的混合问题

    \begin{align*} & u_{tt}=u_{xx}, \quad x>0 ,t>0 \\ & u|_{t=0}=\sin 3x, u_t|_{t=0}=-3\cos 3x ,\quad x>0 \\ & u|_{x=0}=-3t, \quad t>0 \end{align*}

    由题,令u(t,x)=f(\xi)+g(\eta),其中\xi=x+t,\eta=x-t,代入初值条件,所以有
    \begin{cases} f(x)+g(x)=\sin 3x \\ f'(x)-g'(x)=-3\cos 3x \end{cases}
    易得,
    \begin{cases} f(x)=\frac{C}{2} , \quad x>0\\ g(x)=\sin 3x -\frac{C}{2}, \quad x>0 \end{cases}
    代入边值条件,所以有
    f(t)+g(-t)=-3t, \quad t>0
    易得,g(t)=3t-\frac{C}{2},\quad t<0

    所以,
    u(t,x)= \begin{cases} \sin 3(x-t), \quad x>t>0 \\ 3(x-t), \quad t>x>0 \end{cases}

    2017-2-15. 求解下列波动方程的混合问题

    \begin{align*} & u_{tt}=u_{xx}, \quad x>0 ,t>0 \\ & u|_{t=0}=\sin 2x, u_t|_{t=0}=-2\cos 2x ,\quad x>0 \\ & u|_{x=0}=-2t, \quad t>0 \end{align*}

    2017-1-15,易得
    u(t,x)= \begin{cases} \sin 2(x-t), \quad x>t>0 \\ 2(x-t), \quad t>x>0 \end{cases}

    2017-3-15. 求解下列波动方程的混合问题

    \begin{align*} & u_{tt}=u_{xx}, \quad x>0 ,t>0 \\ & u|_{t=0}=4x, u_t|_{t=0}=-4 ,\quad x>0 \\ & u|_{x=0}=-\sin 4t, \quad t>0 \end{align*}

    2017-1-15,易得
    u(t,x)= \begin{cases} 4(x-t), \quad x>t>0 \\ \sin 4(x-t), \quad t>x>0 \end{cases}

    相关文章

      网友评论

        本文标题:波动方程题

        本文链接:https://www.haomeiwen.com/subject/jvdbkltx.html