摘要: 范数的定义和Tensorflow实现
矩阵进阶 - 范数
作为快餐教程,我们尽可能多上代码,多介绍工具,少讲原理和公式。但是我也深知这样是无法讲清楚的,毕竟问题的复杂度摆在这里呢。与大家一起在Tensorflow探索一圈之后,我一定要写一个数学基础比较扎实的进一步教程。
范数(norm)初识
一般大学本科的《线性代数》教材中是不讲范数、广义逆这些知识的,需要学习《矩阵论》课程。但是很不幸,深度学习中会频繁用到。所以我们还是要有个基础的概念的。
不管是一个向量,还是一个矩阵,我们在机器学习中都经常需要有一个对于它们大小的度量。
对于向量的度量,我们的第一印象就用向量的长度就是了么。换成更有文化一点的名词就是欧基里得距离。这么高大上的距离,其实就是所有的值的平方的和的平方根。
我们可以用ord='euclidean'的参数来调用tf.norm来求欧基里得范数。
例:
这没啥神秘的,我们用sqrt也照样算:
下面我们将向量的范数推广到矩阵。其实还是换汤不换药,还是求平方和的平方根。
原来一排的向量,现在换成2x2的矩阵,我们继续求范数。现在有个高大上的名字叫做Frobenius范数。
嗯,一算下来还是跟[1,2,3,4]向量的范数值是一样的。
范数的定义
欧几里得范数和Frobenius范数只是范数的特例。更一般地,范数的定义如下:
∥x∥p=(∑i|xi|p)1p‖x‖p=(∑i|xi|p)1p
其中,p∈R,p≥1p∈R,p≥1
范数本质上是将向量映射到非负值的函数。当p=2时,L2L2范数称为欧几里得范数。因为在机器学习中用得太多了,一般就将∥x∥2‖x‖2简写成∥x∥‖x‖。
更严格地说,范数是满足下列性质的任意函数:
1、f(x)=0⇒x=0f(x)=0⇒x=0
2、f(x+y)≤f(x)+f(y)f(x+y)≤f(x)+f(y) (这条被称为三角不等式, triangle inequality)
3、∀α∈R,f(αx)=|α|f(x)∀α∈R,f(αx)=|α|f(x)
范数的推广
除了L2L2范数之外,在机器学习中还常用L1L1范数,就是所有元素的绝对值的和。
有时候,我们只想计算向量或者矩阵中有多少个元素,这个元素个数也被称为L0L0范数。但是,这种叫法是不科学的,因为不符合上面三条定义中的第三条。一般建议还是使用L1L1范数。
我们来看下L1L1范数的例子:
另外,还有一个范数是L∞L∞范数,也称为最大范数(max norm). 最大范数表示向量中具有最大幅值的元素的绝对值。
我们可以用ord=np.inf的参数来求最大范数。
范数与赋范空间
最后,我们还是看一下数学上对于范数的严格定义。经过上面对于概念和代码实现的了解,现在这个定义已经不难理解了。
定义1 向量范数:设V是数域F上的线性空间,且对于V的任一个向量x,对应一个非负实数∥x∥‖x‖,满足以下条件:
1、正定性:∥x∥≥0‖x‖≥0, ∥x∥=0‖x‖=0当且仅当x=0
2、齐次性:∥αx∥=|α|∥x∥,a∈F‖αx‖=|α|‖x‖,a∈F
3、三角不等式:对任意x,y∈Vx,y∈V,都有∥x+y∥≤∥x∥+∥y∥‖x+y‖≤‖x‖+‖y‖,则称∥x∥‖x‖为向量x的范数,[V;∥⋅∥][V;‖⋅‖]为赋范空间。
定义2 矩阵范数:设A∈Cm×nA∈Cm×n,对每一个A,如果对应着一个实函数N(A),记为∥A∥‖A‖,它满足以下条件:
1、非负性:∥A∥≥0‖A‖≥0, 正定性:A=Om×n⇔∥A∥=0A=Om×n⇔‖A‖=0
2、齐次性:∥αA∥=|α|∥A∥,α∈C‖αA‖=|α|‖A‖,α∈C
3、三角不等式: ∥A+B∥≤∥A∥∥B∥,∀B∈Cm×n‖A+B‖≤‖A‖‖B‖,∀B∈Cm×n,则称N(A)=∥A∥‖A‖为A的广义矩阵范数。进一步,若对Cm×n,Cn×l,Cm×lCm×n,Cn×l,Cm×l上的同类广义矩阵范数∥⋅∥‖⋅‖,有下面的结论:
4、(矩阵乘法的)相容性:∥AB∥≤∥A∥∥B∥,B∈Cn×l‖AB‖≤‖A‖‖B‖,B∈Cn×l,则称N(A)=∥A∥N(A)=‖A‖为A的矩阵范数。
网友评论